A study on dual square free modules
Let M be an H-supplemented coatomic module with FIEP. Then we prove that M is dual square free if and only if every maximal submodule ofM is fully invariant. Let M = ⊕ i∈I Mi be a direct sum, such that M is coatomic. Then we prove that M is dual square free if and only if each Mi is dual square free...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2021
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188753 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A study on dual square free modules / M. Medina-Bárcenas, D. Keskin Tütüncü, Y. Kuratomi // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 267-279. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188753 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1887532023-03-15T01:27:28Z A study on dual square free modules Medina-Bárcenas, M. Keskin Tütüncü, D. Kuratomi, Y. Let M be an H-supplemented coatomic module with FIEP. Then we prove that M is dual square free if and only if every maximal submodule ofM is fully invariant. Let M = ⊕ i∈I Mi be a direct sum, such that M is coatomic. Then we prove that M is dual square free if and only if each Mi is dual square free for all i ∈ I and, Mi and ⊕ j̸≠i Mj are dual orthogonal. Finally we study the endomorphism rings of dual square free modules. Let M be a quasi-projective module. If EndR(M) is right dual square free, then M is dual square free. In addition, if M is finitely generated, then EndR(M) is right dual square free whenever M is dual square free. We give several examples illustrating our hypotheses. 2021 Article A study on dual square free modules / M. Medina-Bárcenas, D. Keskin Tütüncü, Y. Kuratomi // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 267-279. — Бібліогр.: 17 назв. — англ. 1726-3255 DOI:10.12958/adm1512 2020 MSC: 16D40, 16D70 http://dspace.nbuv.gov.ua/handle/123456789/188753 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let M be an H-supplemented coatomic module with FIEP. Then we prove that M is dual square free if and only if every maximal submodule ofM is fully invariant. Let M = ⊕ i∈I Mi be a direct sum, such that M is coatomic. Then we prove that M is dual square free if and only if each Mi is dual square free for all i ∈ I and, Mi and ⊕ j̸≠i Mj are dual orthogonal. Finally we study the endomorphism rings of dual square free modules. Let M be a quasi-projective module. If EndR(M) is right dual square free, then M is dual square free. In addition, if M is finitely generated, then EndR(M) is right dual square free whenever M is dual square free. We give several examples illustrating our hypotheses. |
format |
Article |
author |
Medina-Bárcenas, M. Keskin Tütüncü, D. Kuratomi, Y. |
spellingShingle |
Medina-Bárcenas, M. Keskin Tütüncü, D. Kuratomi, Y. A study on dual square free modules Algebra and Discrete Mathematics |
author_facet |
Medina-Bárcenas, M. Keskin Tütüncü, D. Kuratomi, Y. |
author_sort |
Medina-Bárcenas, M. |
title |
A study on dual square free modules |
title_short |
A study on dual square free modules |
title_full |
A study on dual square free modules |
title_fullStr |
A study on dual square free modules |
title_full_unstemmed |
A study on dual square free modules |
title_sort |
study on dual square free modules |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2021 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188753 |
citation_txt |
A study on dual square free modules / M. Medina-Bárcenas, D. Keskin Tütüncü, Y. Kuratomi // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 267-279. — Бібліогр.: 17 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT medinabarcenasm astudyondualsquarefreemodules AT keskintutuncud astudyondualsquarefreemodules AT kuratomiy astudyondualsquarefreemodules AT medinabarcenasm studyondualsquarefreemodules AT keskintutuncud studyondualsquarefreemodules AT kuratomiy studyondualsquarefreemodules |
first_indexed |
2023-10-18T23:09:05Z |
last_indexed |
2023-10-18T23:09:05Z |
_version_ |
1796157379924983808 |