Точные оценки вероятности попадания неотрицательной унимодальной случайной величины в специальные интервалы при неполной информации
Найдены точные нижние оценки вероятностей попадания неотрицательных унимодальных случайных величин μ в интервалы m - ασμ, m + ασμ, где мода m, которая совпадает с первым моментом случайной величины μ, меньше, чем среднее квадратическое отклонением m < σμ. Параметр α удовлетворяет неравенствам 0...
Збережено в:
Дата: | 2021 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2021
|
Назва видання: | Кібернетика та системний аналіз |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/190652 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Точные оценки вероятности попадания неотрицательной унимодальной случайной величины в специальные интервалы при неполной информации / Л.С. Стойкова // Кібернетика та системний аналіз. — 2021. — Т. 57, № 2. — С. 110–114. — Бібліогр.: 8 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Найдены точные нижние оценки вероятностей попадания неотрицательных унимодальных случайных величин μ в интервалы m - ασμ, m + ασμ, где мода m, которая совпадает с первым моментом случайной величины μ, меньше, чем среднее квадратическое отклонением m < σμ. Параметр α удовлетворяет неравенствам 0 < α < m/σμ < 1. Этот результат может быть применен при расчете вероятности попадания снаряда в полосу при прицельной стрельбе. |
---|