Метадані як засіб семантичного аналізу складних контентів великих даних. Зображення
Метою дослідження є визначення ефективних підходів щодо вдосконалення семантичного ана- лізу графічних контентів великих даних, а саме таких, як зображення або відеосцени. Сутність запропонованого підходу полягає в урахуванні особливих характеристик складних контентів та створенні гібридної моделі а...
Збережено в:
Дата: | 2023 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут програмних систем НАН України
2023
|
Назва видання: | Проблеми програмування |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/191028 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Метадані як засіб семантичного аналізу складних контентів великих даних. Зображення / О.В. Захарова // Проблеми програмування. — 2023. — № 1. — С. 58-65. — Бібліогр.: 32 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Метою дослідження є визначення ефективних підходів щодо вдосконалення семантичного ана- лізу графічних контентів великих даних, а саме таких, як зображення або відеосцени. Сутність запропонованого підходу полягає в урахуванні особливих характеристик складних контентів та створенні гібридної моделі анотування, що розширює текстову модель більш специфічними елементами, наприклад, для візуальних даних, характеристиками візуалізації. Визначення подібності інформаційних контентів є критичною проблемою для вирішення цілої низки задач великих даних. В тому числі, є основою для ка- тегоризації цих контентів, забезпечують можливість композиції документів, конвертації неструктурованого контенту у структури релевантних знань, візуалізації інформації. Семантич- ний аналіз інформаційних контентів, зазвичай, базується на їх метаданих, які складають основу семантичних анотацій та є елементами структурованого семантичного опису контенту й базісом для його автоматизованої обробки. В основу підходу покладено використання онтологій для визначення семантичних анотацій. Онтології надають різноманітні джерела знань для вимірювання семантичної подібності, містять багато інформації про тлумачення понять та інші семантичні зв’язки з ієрархічною структурою, що базується на відносинах гіпонімії. Але, остан- ні роки, разом з швидким зростанням кількості зображень та відеоресурсів, спостерігається суттєве збагачення доступної візуальної інформації. З візуальної точки зору легше зрозуміти, чи є подібними два поняття. Тому, інтеграція семантичної та візуальної інформації зображення забезпечує оптимізацію методів оцінювання подібності, що заснований на онтологіях, та до- зволяє отримати більш узгоджені з уявленням людини метрики подібності. Такі оцінки комплексної семантичної подібності концептів визначаються шляхом композиції двох функцій, перша з яких, фактично, є онтологічною мірою подібності, а друга будується на основі комплексного встановленим ваговим балансом між цими двома різновидами інформації. Поєднання ознак візуалізації з семантичними та онтологічними характеристиками контента у формуванні оцінок подібності й становлять центральну ідею даного дослідження |
---|