Structure and properties of Fe-B-C powders alloyed with Cr, V, Mo or Nb for plasma-sprayed coatings
In the present study, the microstructure development and properties of the starting Fe-B-C powders for plasma spraying fabricated by dispersing a consumable rotating rod were investigated as functions of alloying elements additions. These powders were prepared in the following compositional ranges:...
Збережено в:
Дата: | 2020 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/194417 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Structure and properties of Fe-B-C powders alloyed with Cr, V, Mo or Nb for plasma-sprayed coatings / O.V. Sukhova // Problems of atomic science and tecnology. — 2020. — № 4. — С. 77-83. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In the present study, the microstructure development and properties of the starting Fe-B-C powders for plasma spraying fabricated by dispersing a consumable rotating rod were investigated as functions of alloying elements additions. These powders were prepared in the following compositional ranges: B (10…14 wt.%), C (0.01…0.5 wt.%), Me (0…5.0 wt.%), where Me – Cr, V, Mo or Nb, balance Fe. Structural properties were characterized by metallography, X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. Mechanical properties of the powders were measured by a Vickers indenter. Compression strength, oxidation resistance, and melting temperature were also determined. Chromium or vanadium were found to dissolve completely in Fe₂(B, C) and Fe(B, C) constituent phases of the Fe-B-C powders replacing iron and forming substitutional solid solutions. By entering into the iron borides structure, these alloying elements improve ductility and oxidation resistance but lower melting temperature and hardness of the powders. Molybdenum or niobium were mainly found in secondary phases such as Mo₂B, Mo₂(B, C) or NbB₂ at the Fe₂(B, C) boundaries. As a result, these alloying elements enhance hardness, oxidation resistance and melting temperature of the powders. |
---|