Research of the state of internal surfaces of a supercritical water loop after a session of irradiation
Made of austenitic steel at the NSC KIPT, the supercritical water convection loop Loop-1a was running for more than 500 hours in the first experimental session (in 2011). The materials tested in the loop were placed into a stream of water (more than 50 g/s) at a temperature of 350…400°C, a pressure...
Gespeichert in:
Datum: | 2020 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/194555 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Research of the state of internal surfaces of a supercritical water loop after a session of irradiation / A.I. Azarov, A.S. Bakai, V.N. Boriskin, V.A. Bocharov, Yu.V. Gorenko, M.A. Dolzhek, E.I. Zaitsev, V.A. Momot, V.I. Solodovnikov, V.Yu. Tytov, S.V. Shelepko // Problems of Atomic Science and Technology. — 2020. — № 3. — С. 180-182. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194555 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1945552023-11-27T16:03:41Z Research of the state of internal surfaces of a supercritical water loop after a session of irradiation Azarov, A.I. Bakai, A.S. Boriskin, V.N. Bocharov, V.A. Gorenko, Yu.V. Dolzhek, M.A. Zaitsev, E.I. Momot, V.A. Solodovnikov, V.I. Tytov, V.Yu. Shelepko, S.V. Application of accelerators in radiation technologies Made of austenitic steel at the NSC KIPT, the supercritical water convection loop Loop-1a was running for more than 500 hours in the first experimental session (in 2011). The materials tested in the loop were placed into a stream of water (more than 50 g/s) at a temperature of 350…400°C, a pressure of 23… 25 MPa, and were irradiated by an electron beam with an energy of 10 MeV. Sediments that emerged on the inner surface of the loop were examined. The sediment mainly consisted of compounds of calcium and iron mixed with other elements. There is a possibility to increase corrosion induced by radiation due to dislocation damage, hydrogenation of metal and under the impact of active oxygen. Виготовлена з аустенітної стали в ННЦ ХФТІ надкритична водяна конвекційна петля Loop-1a в першому експериментальному сеансі (2011 рік) пропрацювала понад 500 год. Випробовувані у петлі матеріали перебували в потоці води (понад 50 г/с) при температурі 350…400°C, тиску 23…25 МПа і опромінювалися електронним пучком енергією 10 МеВ. Досліджували відкладення на внутрішній поверхні петлі, які складаються в основному із сполук кальцію і заліза з домішкою інших елементів. Можливе посилення корозії під дією випромінювання за рахунок дислокаційних ушкоджень, насичення воднем і активного кисню. Изготовленная из аустенитной стали в ННЦ ХФТИ сверхкритическая водяная конвекционная петля Loop-1a в первом экспериментальном сеансе (2011 год) проработала более 500 ч. Испытываемые в петле материалы находились в потоке воды (более 50 г/с) при температуре 350…400°C, давлении 23… 25 МПа и облучались электронным пучком энергией 10 МэВ. Исследовали отложения на внутренней поверхности петли, которые состоят в основном из соединений кальция и железа с примесью других элементов. Возможно усиление коррозии под действием излучения за счет дислокационных повреждений, наводорoживания и активного кислорода. 2020 Article Research of the state of internal surfaces of a supercritical water loop after a session of irradiation / A.I. Azarov, A.S. Bakai, V.N. Boriskin, V.A. Bocharov, Yu.V. Gorenko, M.A. Dolzhek, E.I. Zaitsev, V.A. Momot, V.I. Solodovnikov, V.Yu. Tytov, S.V. Shelepko // Problems of Atomic Science and Technology. — 2020. — № 3. — С. 180-182. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 82.80.-d; 07.35.+k; 29.20.Ej http://dspace.nbuv.gov.ua/handle/123456789/194555 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Application of accelerators in radiation technologies Application of accelerators in radiation technologies |
spellingShingle |
Application of accelerators in radiation technologies Application of accelerators in radiation technologies Azarov, A.I. Bakai, A.S. Boriskin, V.N. Bocharov, V.A. Gorenko, Yu.V. Dolzhek, M.A. Zaitsev, E.I. Momot, V.A. Solodovnikov, V.I. Tytov, V.Yu. Shelepko, S.V. Research of the state of internal surfaces of a supercritical water loop after a session of irradiation Вопросы атомной науки и техники |
description |
Made of austenitic steel at the NSC KIPT, the supercritical water convection loop Loop-1a was running for more than 500 hours in the first experimental session (in 2011). The materials tested in the loop were placed into a stream of water (more than 50 g/s) at a temperature of 350…400°C, a pressure of 23… 25 MPa, and were irradiated by an electron beam with an energy of 10 MeV. Sediments that emerged on the inner surface of the loop were examined. The sediment mainly consisted of compounds of calcium and iron mixed with other elements. There is a possibility to increase corrosion induced by radiation due to dislocation damage, hydrogenation of metal and under the impact of active oxygen. |
format |
Article |
author |
Azarov, A.I. Bakai, A.S. Boriskin, V.N. Bocharov, V.A. Gorenko, Yu.V. Dolzhek, M.A. Zaitsev, E.I. Momot, V.A. Solodovnikov, V.I. Tytov, V.Yu. Shelepko, S.V. |
author_facet |
Azarov, A.I. Bakai, A.S. Boriskin, V.N. Bocharov, V.A. Gorenko, Yu.V. Dolzhek, M.A. Zaitsev, E.I. Momot, V.A. Solodovnikov, V.I. Tytov, V.Yu. Shelepko, S.V. |
author_sort |
Azarov, A.I. |
title |
Research of the state of internal surfaces of a supercritical water loop after a session of irradiation |
title_short |
Research of the state of internal surfaces of a supercritical water loop after a session of irradiation |
title_full |
Research of the state of internal surfaces of a supercritical water loop after a session of irradiation |
title_fullStr |
Research of the state of internal surfaces of a supercritical water loop after a session of irradiation |
title_full_unstemmed |
Research of the state of internal surfaces of a supercritical water loop after a session of irradiation |
title_sort |
research of the state of internal surfaces of a supercritical water loop after a session of irradiation |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2020 |
topic_facet |
Application of accelerators in radiation technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194555 |
citation_txt |
Research of the state of internal surfaces of a supercritical water loop after a session of irradiation / A.I. Azarov, A.S. Bakai, V.N. Boriskin, V.A. Bocharov, Yu.V. Gorenko, M.A. Dolzhek, E.I. Zaitsev, V.A. Momot, V.I. Solodovnikov, V.Yu. Tytov, S.V. Shelepko // Problems of Atomic Science and Technology. — 2020. — № 3. — С. 180-182. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT azarovai researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation AT bakaias researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation AT boriskinvn researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation AT bocharovva researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation AT gorenkoyuv researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation AT dolzhekma researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation AT zaitsevei researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation AT momotva researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation AT solodovnikovvi researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation AT tytovvyu researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation AT shelepkosv researchofthestateofinternalsurfacesofasupercriticalwaterloopafterasessionofirradiation |
first_indexed |
2025-07-16T21:55:42Z |
last_indexed |
2025-07-16T21:55:42Z |
_version_ |
1837842241989640192 |
fulltext |
ISSN 1562-6016. ВАНТ. 2020. №3(127) 180
RESEARCH OF THE STATE OF INTERNAL SURFACES
OF A SUPERCRITICAL WATER LOOP AFTER A SESSION
OF IRRADIATION
A.I. Azarov, A.S. Bakai, V.N. Boriskin, V.A. Bocharov, Yu.V. Gorenko, M.A. Dolzhek,
E.I. Zaitsev, V.A. Momot, V.I. Solodovnikov, V.Yu. Tytov, S.V. Shelepko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: bocharov@kipt.kharkov.ua
Made of austenitic steel at the NSC KIPT, the supercritical water convection loop Loop-1a was running for more
than 500 hours in the first experimental session (in 2011). The materials tested in the loop were placed into a stream
of water (more than 50 g/s) at a temperature of 350…400°C, a pressure of 23…25 MPa, and were irradiated by an
electron beam with an energy of 10 MeV. Sediments that emerged on the inner surface of the loop were examined.
The sediment mainly consisted of compounds of calcium and iron mixed with other elements. There is a possibility
to increase corrosion induced by radiation due to dislocation damage, hydrogenation of metal and under the impact
of active oxygen.
PACS: 82.80.-d; 07.35.+k; 29.20.Ej
INTRODUCTION
The commissioning of nuclear reactors cooled by
supercritical water (SCW) will increase the efficiency of
nuclear power plants [1]. SCW has remarkable proper-
ties it dissolves many substances, has an increased
heat capacity, etc, but has corrosive activity. The ex-
amination of the corrosive properties of SCW under the
influence of radiation is an urgent task in the develop-
ment of new nuclear reactors [1 - 5]. The described
convection loop (Fig. 1) is made of a pipe with a diame-
ter of 40 mm with a wall thickness of mainly 4 mm (un-
der a heater 1…6 mm). Pipe made of steel-12X18H10T
(AISI 321). Water convection with a mass flow up to
70 g/s was carried out by heating the irradiation cham-
ber with an electron beam of 10 MeV energy, two ex-
ternal heaters and two coolers with pressures up to
25 MPa and temperatures up to 400C.
1. DEPOSITS INSIDE
THE CONVECTION LOOP
In the first session, the Loop-1a was running for
more than 500 h [3, 5]. After the session, the irradiation
chamber (IC) was dismantled from the loop. The
scheme of the loop with the cut out IC is shown in
Fig. 1.
Fig. 1. Supercritical water convection loop.
The scheme of the loop (a); photos inside the loop (b)
Using a miniature video camera, was shot a video of
the inner surface of the loop pipe. Fig. 1 shows the loca-
tion where the photos was taken inside the loop. The
pipe is mainly covered by whitish sediment, which con-
sists of grains of calcium salts (Fig. 2).
Fig. 2. Sediments on the inner surface
of the pipe (lower, horizontal part),
grains of calcium salts are visible
A light lilac color coating is observed on the annular
welding seam (Fig. 3). Samples of sediment were taken
from the inner surfaces of the loop, it was possible to
collect part of the coating (sediment) at a distance of 15
and 60 cm from IC, to the right and left of heater № 1,
as well as from the blue ring on the weld (see Fig. 3).
b
a
ISSN 1562-6016. ВАНТ. 2020. №3(127) 181
Sample № 1 weighing 17 mg, sample № 2 weighing
85 mg and sample № 3 weighing 2.7 mg were dissolved
in 5% nitric acid, the solutions were filtered and brought
to a volume of 25 ml. On the filters from samples № 1
and 2, a dark powder remained, resembling pyrolusite,
weighing about 1 mg.
In August 2019, the Loop-1a with a new irradiation
chamber was running for more than 500 h, the nature of
the internal sediment is basically the same as in the first
session.
2. EXPERIMENTAL RESULTS
In solutions by the emission spectral method with
induction-coupled plasma, the content of elements was
determined using a Shimadzu-9000 spectrometer, the
main of which are shown in Table (weight % in sedi-
ment).
The composition of the sediments on the inner surface of the loop, %
Sample Ca Cr Cu Fe Mg Mn Ni P S Sr
№ 1 11.2 0.02 0.07 0.53 0.05 0.04 0.13 0.41 0.18 0.06
№ 2 11.8 0,01 0.05 0.38 0.01 0.04 0.05 0.49 0.21 0.07
№ 3 3.00 0.04 0.27 11.11 0.07 0.06 0.27 0.26 0.23 0.001
As can be seen from the Table, a significant calcium
content was found, as well as a noticeable content of
heavy metals and strontium as a satellite of calcium. In
the sample taken from the place of ring welding (see a
blue ring, sample № 3, Fig. 3), an increased content of
iron, nickel, copper and chromium was determined,
which may indicate an increase of corrosion along the
weld. The content of phosphorus in the sample (up to
0.5%) confirms that corrosion of stainless steel occurs
in SCW.
Fig. 3. The blue ring where sample № 3 is taken.
A strip of rust and a nearby bluish strip are located
asymmetrically along the diameter of the annular seam
Only for Cr, Mg, Ni are the results for the first two
samples very different. To assess the behavior of micro-
impurities in steel, its spectral analysis was performed
using a Spectrolab M10 spectrometer: C 0.06; Si
0.05; Mn 1.07; Cr 17.93; Ni 9.89; P 0.019; S
0.033; Cu 0.17; Mo 0.08; V 0.04; W 0.05; Ti
0.62. It was confirmed that the chemical composition
corresponds to steel X18H10T according to GOST
5632-72 and SCW is being enriched with steel compo-
nents.
Fig. 4. Sediments on the impeller
Fig. 5. The beginning of the pipe under the lower
heater, the sediment layer is loose, pimples are visible
Fig. 6. The seam above the IC, dense sediments
are mostly whitish
Fig. 7. Upper horizontal pipe
Fig. 8. The output of water from the cooler 1
ISSN 1562-6016. ВАНТ. 2020. №3(127) 182
Experiment 2019 showed that sediment on the im-
peller swirling the SCR flow is more dense (Fig. 4) than
on the straight pipe section (Fig. 7); in the heater region,
the sediment layer is inhomogeneous (Fig. 5), above the
irradiation chamber dense sediment (Fig. 6), yellowish
lamellar sediment from recycled water in the cooler is
the same as in the first session, and characterized by a
high content of strontium (Fig. 8).
CONCLUSIONS
The presence of calcium, magnesium and strontium
in sediments is associated with the presence of these
elements in the source water. Phosphorus and sulfur
came to the water undoubtedly due to corrosion.
Most sediment inside the loop is non-corrosive, and
rust spots and colored sediment indicate corrosion of
stainless steel. At the welds, an increased amount of
sediment is observed. Blue sediment is characterized by
high content of iron, chromium, copper, nickel. In the
area of the heater, the sediment layer is uneven.
Sediment on the impeller is of the same type as on
the straight section of the pipe, but it is more dense in
appearance.
Below the irradiation chamber, sediment is loose
(see Fig. 5), and above the chamber sediment is more
smooth and denser (see Fig. 6). It is possible that phase
transitions of the water in IC from before critical state to
supercritical state and vice versa, contributes to compac-
tion of sediment on the pipe. To clarify this statement,
additional research is required.
The deposits in vertical sections of the loop are
denser than in horizontal sections where stagnant zones
are likely to form.
Sediment in the cooler from recycled water (see
Fig. 8) is characterized by a high strontium content,
even slightly higher than the calcium content. That can
be explained by the lower solubility of strontium salts.
It can be argued that although in SCW is observed
corrosion of stainless steel, however, the thickness of
the walls of the loop practically did not change; there-
fore, the body of the Loop-1a loop can be used in new
experiments.
REFERENCES
1. D. Guzonas, R. Novotny, S. Penttila, A. Toivonen,
W. Zheng. Materials and Water Chemistry for Super-
critical Water-Cooled Reactors // Woodhead Publ Ser.
in Energy, Elsvier UK Ltd, Cambridge, 2018, 264 p.
2. A.S. Bakai, V.N. Boriskin, A.N. Dovbnya,
S.V. Dyuldya, D. Guzonas. Supercritical Water
Convection Loop for SCWR Materials Corrosion
Tests under Electron Irradiation: First Results and
Lessons Learned // Proc. of the 6th Int. Symposium
on Supercritical Water-Cooled Reactors (ISSCWR-
6), March 3-7, 2013, Shenzhen, Guangdong, China.
Paper #ISSCWR6-13062, 14 p.
3. O.S. Bakai, V.M. Boriskin, A.N. Dovbnya, S.V. Dyuldya,
D.A. Guzonas. Combined Effect of Irradiation,
Temperature, and Water Coolant Flow on Corrosion
of Zr-, Ni-Cr, and Fe-Cr-based Alloys // J. Nucl.
Eng. Rad. Sci. 2016, v. 2, Issue 1, 021007 (11 p.).
4. O.S. Bakai, V.M. Boriskin, M.I. Bratchenko, et al.
Many-Channel Cell to Irradiate the Material Speci-
mens by Electrons in the Interior of the Supercritical
Water Convection Loop // Problems of Atomic Sci-
ence and Technology. Series “Nuclear Physics Inves-
tigations”. 2015, № 6, p. 130-136.
5. O.S. Bakai, V.M. Boriskin, M.I. Bratchenko, et al.
Regimes of Irradiation by Electrons of Samples of
Materials in Supercritical Water Convection Loop //
Problems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2017, № 6, p. 185-
190.
Article received 30.01.2020
ИССЛЕДОВАНИЕ СОСТОЯНИЯ ВНУТРЕННИХ ПОВЕРХНОСТЕЙ СВЕРХКРИТИЧЕСКОЙ
ВОДЯНОЙ ПЕТЛИ ПОСЛЕ СЕАНСА ОБЛУЧЕНИЯ
А.И. Азаров, А.С. Бакай, В.Н. Борискин, В.А. Бочаров, Ю.В. Горенко, М.А. Должек, Е.И. Зайцев,
В.А. Момот, В.И. Солодовников, В.Ю. Титов, С.В. Шелепко
Изготовленная из аустенитной стали в ННЦ ХФТИ сверхкритическая водяная конвекционная петля
Loop-1a в первом экспериментальном сеансе (2011 год) проработала более 500 ч. Испытываемые в петле
материалы находились в потоке воды (более 50 г/с) при температуре 350…400°C, давлении 23…25 МПа и
облучались электронным пучком энергией 10 МэВ. Исследовали отложения на внутренней поверхности
петли, которые состоят в основном из соединений кальция и железа с примесью других элементов. Возмож-
но усиление коррозии под действием излучения за счет дислокационных повреждений, наводорoживания и
активного кислорода.
ДОСЛІДЖЕННЯ СТАНУ ВНУТРІШНІХ ПОВЕРХОНЬ НАДКРИТИЧНОЇ
ВОДЯНОЇ ПЕТЛІ ПІСЛЯ СЕАНСУ ОПРОМІНЕННЯ
О.І. Азаров, О.С. Бакай, В.Н. Боріскін, В.О. Бочаров, Ю.В. Горенко, М.О. Должек, Є.І. Зайцев,
В.О. Момот, В.І. Солодовніков, В.Ю. Тітов, С.В. Шелепко
Виготовлена з аустенітної стали в ННЦ ХФТІ надкритична водяна конвекційна петля Loop-1a в першому
експериментальному сеансі (2011 рік) пропрацювала понад 500 год. Випробовувані у петлі матеріали пере-
бували в потоці води (понад 50 г/с) при температурі 350…400°C, тиску 23…25 МПа і опромінювалися елек-
тронним пучком енергією 10 МеВ. Досліджували відкладення на внутрішній поверхні петлі, які складаються
в основному із сполук кальцію і заліза з домішкою інших елементів. Можливе посилення корозії під дією
випромінювання за рахунок дислокаційних ушкоджень, насичення воднем і активного кисню.
|