Plasma of underwater electric discharges with metal vapors
This paper deals with spectroscopy of underwater electric discharge plasma with. In particular, the focus is on configuration where the electrodes are immersed in liquid and its application in nanoscience and biotechnology. General overview of the experimental approach adopted by authors aiming to s...
Gespeichert in:
Datum: | 2019 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/194632 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Plasma of underwater electric discharges with metal vapors / V.F. Boretskij, A.N. Veklich, T.A. Tmenova, Y. Cressault, F. Valensi, K.G. Lopatko, Y.G. Aftandilyants // Problems of atomic science and technology. — 2019. — № 1. — С. 127-130. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194632 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1946322023-11-28T11:53:55Z Plasma of underwater electric discharges with metal vapors Boretskij, V.F. Veklich, A.N. Tmenova, T.A. Cressault, Y. Valensi, F. Lopatko, K.G. Aftandilyants, Y.G. Low temperature plasma and plasma technologies This paper deals with spectroscopy of underwater electric discharge plasma with. In particular, the focus is on configuration where the electrodes are immersed in liquid and its application in nanoscience and biotechnology. General overview of the experimental approach adopted by authors aiming to study the water-submerged electrical discharge plasma and effects of various parameters on its properties is described. The electron density was estimated on the base of spectral line broadening and shifting. Pозглядаються особливості спектроскопії плазми підводного електричного розряду з домішками парів металів та його застосування в нано- та біотехнологіях. Зокрема, досліджується розряд між двома зануреними у воду металевими електродами. Наводиться детальний опис експериментальної методики з реалізації спектроскопічної діагностики плазми такого розряду. Концентрацію електронів оцінили на основі розширення та зсуву спектральної лінії. Pассматриваются особенности спектроскопии плазмы подводного электрического разряда с примесями паров металлов и его применения в нано- и биотехнологиях. В частности, исследуется разряд, возникающий между двумя погруженными в воду металлическими электродами. Приводится детальное описание экспериментальной методики по реализации спектроскопической диагностики плазмы такого разряда. Концентрацию электронов оценили на основе расширения и сдвига спектральной лини. 2019 Article Plasma of underwater electric discharges with metal vapors / V.F. Boretskij, A.N. Veklich, T.A. Tmenova, Y. Cressault, F. Valensi, K.G. Lopatko, Y.G. Aftandilyants // Problems of atomic science and technology. — 2019. — № 1. — С. 127-130. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 52.25.−b, 52.80.−s, 52.80.Wq http://dspace.nbuv.gov.ua/handle/123456789/194632 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Boretskij, V.F. Veklich, A.N. Tmenova, T.A. Cressault, Y. Valensi, F. Lopatko, K.G. Aftandilyants, Y.G. Plasma of underwater electric discharges with metal vapors Вопросы атомной науки и техники |
description |
This paper deals with spectroscopy of underwater electric discharge plasma with. In particular, the focus is on configuration where the electrodes are immersed in liquid and its application in nanoscience and biotechnology. General overview of the experimental approach adopted by authors aiming to study the water-submerged electrical discharge plasma and effects of various parameters on its properties is described. The electron density was estimated on the base of spectral line broadening and shifting. |
format |
Article |
author |
Boretskij, V.F. Veklich, A.N. Tmenova, T.A. Cressault, Y. Valensi, F. Lopatko, K.G. Aftandilyants, Y.G. |
author_facet |
Boretskij, V.F. Veklich, A.N. Tmenova, T.A. Cressault, Y. Valensi, F. Lopatko, K.G. Aftandilyants, Y.G. |
author_sort |
Boretskij, V.F. |
title |
Plasma of underwater electric discharges with metal vapors |
title_short |
Plasma of underwater electric discharges with metal vapors |
title_full |
Plasma of underwater electric discharges with metal vapors |
title_fullStr |
Plasma of underwater electric discharges with metal vapors |
title_full_unstemmed |
Plasma of underwater electric discharges with metal vapors |
title_sort |
plasma of underwater electric discharges with metal vapors |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2019 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194632 |
citation_txt |
Plasma of underwater electric discharges with metal vapors / V.F. Boretskij, A.N. Veklich, T.A. Tmenova, Y. Cressault, F. Valensi, K.G. Lopatko, Y.G. Aftandilyants // Problems of atomic science and technology. — 2019. — № 1. — С. 127-130. — Бібліогр.: 16 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT boretskijvf plasmaofunderwaterelectricdischargeswithmetalvapors AT veklichan plasmaofunderwaterelectricdischargeswithmetalvapors AT tmenovata plasmaofunderwaterelectricdischargeswithmetalvapors AT cressaulty plasmaofunderwaterelectricdischargeswithmetalvapors AT valensif plasmaofunderwaterelectricdischargeswithmetalvapors AT lopatkokg plasmaofunderwaterelectricdischargeswithmetalvapors AT aftandilyantsyg plasmaofunderwaterelectricdischargeswithmetalvapors |
first_indexed |
2025-07-16T22:01:38Z |
last_indexed |
2025-07-16T22:01:38Z |
_version_ |
1837842614748971008 |
fulltext |
ISSN 1562-6016. ВАНТ. 2019. №1(119)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, № 1. Series: Plasma Physics (25), p. 127-130. 127
PLASMA OF UNDERWATER ELECTRIC DISCHARGES WITH METAL
VAPORS
V.F. Boretskij
1
, A.N. Veklich
1
, T.A. Tmenova
1
, Y. Cressault
2
, F. Valensi
2
, K.G. Lopatko
3
,
Y.G. Aftandilyants
3
1
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
2
Universite Paul Sabatier, Toulouse, France;
3
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
E-mail: boretskij.v@gmail.com; valensi@laplace.univ-tlse.fr; lopatko_konst@hotmail.com
This paper deals with spectroscopy of underwater electric discharge plasma with. In particular, the focus is on
configuration where the electrodes are immersed in liquid and its application in nanoscience and biotechnology.
General overview of the experimental approach adopted by authors aiming to study the water-submerged electrical
discharge plasma and effects of various parameters on its properties is described. The electron density was estimated
on the base of spectral line broadening and shifting.
PACS: 52.25.−b, 52.80.−s, 52.80.Wq
INTRODUCTION
PLASMAS IN LIQUID
Plasmas in liquid are becoming an increasingly
important topic in the field of plasma science and
technology.
In the last two decades, attention of research on the
interactions of plasmas with liquids has spread on a
variety of applications that include electrical switching
[1], analytical chemistry [2], environmental remediation
[3, 4], sterilization and medical applications [5], etc.
These opportunities have challenged plasma community
with multidisciplinary scientific questions.
Plasmas in liquids usually refer to those systems
where the voltage, electric fields or other conditions
enable the formation of plasma directly in the liquid
phase. Although technologically is very important from
many perspectives, the fundamental processes of
initiating and sustaining plasma in liquids are poorly
understood.
For several years, researchers have been
investigating phenomena of electrical breakdown and
ionization in liquids. This has led to relatively good
understanding of ionization mechanisms in atomic
liquids (for example, liquid Ar) [6], while the case for
more complex liquids, particularly polar liquids such as
water, still requires further study.
Plasmas in liquids have been extensively studied
using imaging and optical emission spectroscopy. These
diagnostics techniques allow measuring basic plasma
parameters including discharge morphology, gas
temperature, electron density, and excitation
temperatures. Despite of the increased efforts, there
remain many unresolved questions about the properties
of plasma interaction with liquids. For instance, in [7]
authors distinguish and discuss two main challenges: (a)
breakdown processes and mechanisms in liquids; and
(b) physical and chemical processes occurring at the
plasma–liquid interface. The second challenge is
particularly multi-disciplinary due to the wide range of
chemical species and physical effects which involve
radical and reactive species, ions, electrons, UV
emission, electric fields, heat and neutral gas flows
across the gas–liquid interface. All these individual
components are typically studied in distinct fields of
research.
PLASMA-LIQUID INTERACTIONS FOR
NANOMATERIAL SYNTHESIS
The focus of this paper, in particular, is directed
towards a relatively new branch of plasma research,
nanomaterial synthesis through plasma–liquid
interactions, which has been developing rapidly, mainly
due to the various recently developed plasma sources
operating at low and atmospheric pressures.
Configurations of plasmas over or inside liquids provide
plasma–liquid interfaces where numerous occurring
physical and chemical processes can be used to
synthesize various nanomaterials.
Interactions of nanoparticles with biological
environments present a separate interest. Numerous
investigations performed in order to define the effect of
nanomaterials on crop production [8, 9] have shown that
nanoparticles have positive morphological effects,
among which enhancement of plant resistance to
unfavorable environmental conditions and achievement
of high production yields due to the active penetration
of nanoelements into the plant cells [10].
Main motivation for the present research lies in the
potential biotechnological application of metal colloids
as micronutrients. The emphasis of the work is on
diagnostics of the water-submerged electrical discharge
plasma and effects of metal vapours on its properties.
Preceding studies on the subject carried out by authors
illustrate a necessity for the further investigations,
mostly due to the challenges arising from the data
interpretation and complexity of the plasma
configuration in terms of its diagnostics [11, 12].
Additionally, authors have previously worked on
selection of spectral lines and corresponding
spectroscopic data for number of metals (Cu, Ag, Mo,
W, Cr) [13, 14] which lays down a foundation for the
present study.
1. EXPERIMENTAL APPROACH
Originally, investigations of the underwater electric
discharge plasma were initiated with a general objective
mailto:lopatko_konst@hotmail.com
128 ISSN 1562-6016. ВАНТ. 2019. №1(119)
to bring better understanding of physical processes
occurring during the synthesis of metal colloids by
specifically designed electrospark dispersion generator
described in [15]. The operation of the latter is based on
volumetric plasma-assisted destruction of a liquid-
immersed layer of metal granules via simultaneous
formation of spark channels in contact points between
the granules as a result of pulse energy input from the
generator. Despite of the relative simplicity of its
operation principle, in practice there are numerous
complications to deal with. They mostly originate from
impossibility of studying the discharge occurring
between two metal granules independently of the overall
synthesis process.
Therefore, an alternative experimental apparatus has
been designed aiming to ‘model’ or, in somehow,
‘simulate’ the behavior of two separately taken granules
and discharge between them (Fig. 1). The setup consists
of a pulsed generator (I) on the basis of a thyristor-
switched capacitor bank, a trigger unit (II) with an
adjustable threshold value, a support (III) allowing
positioning of the electrodes and a glass container (IV)
filled with water. The current is measured with a
Rogowsky coil (V), the electrical data is being stored
with an oscilloscope (VI). Stochastic movement of
metal granules occurring during the operation of setup
described in [15] has been considered by allowing
pendulum-like motion of one of the electrodes in Fig. 1,
while another electrode remain in a fixed position.
Fig. 1. Experimental setup for the single-pulse
underwater electric discharge generation between two
electrodes
2. EXPERIMENTAL PARAMETERS
SELECTION
The experimental setup (see Fig. 1) was tested by
authors to examine its operation capabilities, and results
obtained from the first sets of experiments were
presented in [11]. This was an initial step with an
overall research objective to perform a comprehensive
parametric study, and to answer number of questions
regarding the plasma discharge characteristics, energy
balance of such system and general correlation between
its various parameters.
The first challenge occurred with understanding that
the adjustment of the electrical operation parameters
should be made in order to achieve the correspondence
between inter-granules discharge characteristics and that
of the inter-electrodes discharge. In [11], the maximal
load voltage of the capacitor bank was 430 V for a total
capacity of 1000 µF, resulting in the average discharge
duration of 320…360 μs. Duration of the discharge
occurring between two metal granules was estimated
from the high-speed imaging of the process described in
[15]. The discharge chamber from the electrospark
dispersion generator was connected to the experimental
setup in Fig. 1, replacing the electrodes.
The top view of the discharge chamber is shown in
Fig. 2. It was visualized using a Photron Fastcam MINI
AX100 high-speed camera (VIII, see Fig. 1), the
acquisition being synchronized to the discharge
triggering. Three configurations were investigated
aiming to study the patterns of current passage and
sparking process, differing in the amount of the granules
placed in the chamber to form a monolayer, a double
layer or a triple layer. Also, the granules were of two
different sizes: small granules of around 1…2 mm
diameter, and those of 3…4 mm diameter. In all cases,
high-speed imaging rate was 127500 fps with 128x64
pixels image resolution for current regime of 550 A,
corresponding to load voltage of 150 V.
Fig. 2. The top view of the discharge chamber used for
the estimation of the spark duration between two metal
granules
From the high-speed imaging data, it was concluded
that independently of the layer configuration or size of
the granules, the average duration of a separate spark
discharge is estimated to be 150…180 μs. It was also
noted that sparks tend to occur mostly along the carbon
electrodes mounted into the chamber’s walls rather than
in its central region.
Based on these results, the adjustment of the
experimental setup in Fig. 1 was carried out. In
particular, replacement of the feeding cables by shorter
and thicker ones in order to decrease the total resistance,
and connecting capacitors in series in order to decrease
the overall capacity from 1000 to 330 µF. In such a
manner, the average duration of a single discharge
between the tips of two electrodes was set up to 150 μs,
meeting the target objective.
3. PLASMA DIAGNOSTICS
Due to the often-limited accessibility of active
diagnostics and the complicated reactor geometries
involving liquids, optical emission spectroscopy (OES)
ISSN 1562-6016. ВАНТ. 2019. №1(119) 129
is the most commonly used to investigate plasmas in
liquids. This work is no exception. The spectroscopic
diagnostics (see Fig. 1) was performed with an Acton
SpectraPro SP-2750 (VII) spectrometer fitted with
ProEM 1024 electron-multiplying charge-coupled
device (EMCCD) camera (Princeton Instruments). The
optical setup is composed of a mirror (M1) and two
lenses (L1 and L2), allowing to observe the arc from
above. In order to apply OES techniques, plasma must
be stable and reproducible, and with ‘acceptable’ signal-
to-noise ratios. The latter can often be improved by the
accumulation of data from several measurements.
The first set of experiments carried out with the
‘new’ adjusted electric parameters allowed to get a
glimpse of the setup’s performance. For the purposes of
a parametric study, as explained before, authors have
selected a number of parameters to vary and,
respectively, to analyze the results of each parameter’s
variation. Namely, those of the interest included
electrode material (Cu, Mo), type of the liquid (non-
purified and deionized water), depth of the electrode
immersion (1 and 3 mm water layer above the tips of the
electrodes), current input (400, 600, 800 and 1000 A).
Fig. 3 illustrates the emission spectrum of the
discharge with current up to 1 kA for the case of Cu
electrodes immersed into deionized water. As one can
see, the discharge cross section is less than 1.8 mm in
diameter with 0.7 mm hot core. Therefore, applying the
current up to several hundred amps in such a thin
bottleneck leads to high values of current density and,
obviously, high electron density in plasma. Traditionally
for plasma with metal admixture, the Cu I spectral lines
are the most prominent in the emission spectrum. Some
copper spectral line are strongly effected by Stark
broadening and shift [16]. For such a narrow discharge
with high current density, we registered observed along
discharge axis line profiles with asymmetric wings for
the lines with the most prominent line shift.
Fig. 3. 3D plot of the emission of the discharge between
copper electrodes immersed into deionized water
Fig. 4 shows 3D profile of Cu I 515.3 nm spectral
line with pronounced asymmetry at the blue wing for a
hot core of the discharge. Such behavior correlates with
negative shift data calculated in [16]. Along with this, it
significantly complicates line analysis with the aim to
obtain plasma parameters data.
Fig. 4. 3D plot of the Cu I 515.3 nm profile, emitted by
the discharge between copper electrodes immersed into
deionized water
Taking into account general mechanisms of
broadening and shifting, multi-peak fitting of Cu I 515.3
nm line was carried out by Voigt function. Fig. 5 shows
observed along discharge axis profile, as well as, multi-
peak fitting curves. Results shows line shift from 0.12 to
0.84 nm and line width from 0.23 to 1.27 nm. Electron
density was estimated to be in the range from 0.67 to
19.5·10
17
cm
-3
on the base of fitting result data and
broadening and shifting constants from [16]. Electron
density up to 3.7·10
17
cm
-3
obtained from shift and
broadening coincides for peaks 2-4 in Fig. 5, but
significantly differ for peak 1 shifting (19.5·10
17
cm
-3
).
Therefore, further experiments and analysis must be
carried out to explain such discrepancy.
Fig. 5. Observed along discharge axis Cu I 515.3 nm
profile, emitted by the discharge between copper
electrodes immersed into deionized water
CONCLUSIONS
Model experimental setup was adopted to coincide
with ххparameters of plasma reactor for nanoparticle
synthesis. Such experimental approach allows to study
the water-submerged electrical discharge plasma and
effects of various parameters on its properties.
Optical emission spectroscopy was used to estimate
electron density range in the discharge between copper
electrodes immersed into deionized water.
514 515 516 517 518
0
500
1000
1500
2000
2500
3000
experimental profile
Fit Peak 1
Fit Peak 2
Fit Peak 3
Fit Peak 4
Cumulative Fit Peak
I, a.u.
, nmcontinuum emission
130 ISSN 1562-6016. ВАНТ. 2019. №1(119)
It was found that emission properties of such plasma
source are mainly predetermined by metal vapors
admixtures. Line broadening and shifting due to the
Stark effect of spectral line Cu I 515.3 nm gave the
values of electron density from 0.67 to 3.7 10
17
cm
-3
.
REFERENCES
1. J.C. Martin. J.C. Martin on Pulsed Power. New
York: “Plenum Press”, 1996, p. 546.
2. M. Smoluch, P. Mielczarek, J. Silberring. Plasma-
based ambient ionization mass spectrometry in
bioanalytical sciences // Mass Spectrometry Review (1).
2016, № 35, p. 22-34.
3. J.E. Foster, B.S. Sommers, S.N. Gucker, et al.
Perspectives on the interaction of plasmas with liquid
water for water purification // IEEE Transactions on
Plasma Science (5). 2012, № 40, p. 1311-1323.
4. T. Ishijima, K. Nosaka, Y. Tanaka, et al. A high-
speed photoresist removal process using multibubble
microwave plasma under a mixture of multiphase
plasma environment // Applied Physics Letters (14).
2013, № 103, p. 142101.
5. G. Fridman, G. Friedman, A. Gutsol, et al. Applied
plasma medicine // Plasma Process and Polymers (6).
2008, № 5, p. 503-533.
6. N. Bonifaci, A. Denat, V. Atrazhev. Ionization
phenomena in high-density gaseous and liquid argon in
corona discharge experiments // Journal of Physics D:
Applied Physics (19). 1997, № 30, p. 2717.
7. P.J. Bruggeman, M.J. Kushner, B.R. Locke, et al.
Plasma-liquid interactions: a review and roadmap //
Plasma Sources Science and Technology (5). 2016,
№ 25, p. 59.
8. C.M. Rico, S. Majumdar, M. Duarte-Gardea, et al.
Interaction of nanoparticles with edible plants and their
possible implications in the food chain // Journal of
Agricultural and Food Chemistry (8). 2011, № 59,
p. 3485-3498.
9. K. Knauer, T. Bucheli. Nano-materials – the need for
research in agriculture // Agrarforschung (10). 2009,
№ 16, p. 390-395.
10. N.Y. Taran, O.M. Gonchar, K.G. Lopatko, et al. The
effect of colloidal solution of molybdenum
nanoparticles on the microbial composition in
rhizosphere of Cicer arietinum L. // Nanoscale research
letters (1). 2014, № 9, p. 289.
11. R. Venger, T. Tmenova, F. Valensi, et al. Detailed
Investigation of the Electric Discharge Plasma between
Copper Electrodes Immersed into Water //Atoms (4).
2017, № 5, p. 40.
12. T.A. Tmenova, A.N. Veklich, V.F. Boretskij, et al.
Optical emission spectroscopy of plasma of underwater
electric spark discharges between metal granules //
Problems of Atomic Science and Technology (1). 2017,
v. 23, p. 132-135.
13. A.N. Veklich, A.V. Lebid, T.A. Tmenova.
Spectroscopic data of W I, Mo I and Cr I spectral lines:
selection and analysis // Journal of Astrophysics and
Astronomy (4). 2015, № 36.
14. I.L. Babich, V.F. Boretskij, A.N. Veklich, et al.
Spectroscopic data and Stark broadening of Cu I and
Ag I spectral lines: Selection and analysis // Advances in
Space Research (7). 2014, v. 54, p. 1254-1263.
15. A.N. Veklich, K.G. Lopatko, Y.G. Aftandilyants, et
al. Nanoparticle generation by plasma-erosion discharge
in liquid environment // VII International Conference
Plasma Physics and Plasma Technology. Minsk,
Belarus, 2012, Contributed papers (2). 2012, p. 495-
498.
16. R. Konjevic, N. Konjevic. Stark broadening and
shift of neutral copper spectral line // Fizika. 1986,
v. 18, p. 327-335 (in Russian).
Article received 15.10.2018
ПЛАЗМА ЭЛЕКТРИЧЕСКОГО ПОДВОДНОГО РАЗРЯДА С ПРИМЕСЯМИ ПАРОВ МЕТАЛЛОВ
В.Ф. Борецкий, А.Н. Веклич, Т.А. Тменова, Я. Крессо, Ф. Валенси, К.Г. Лопатько, Е.Г. Афтандилянц
Pассматриваются особенности спектроскопии плазмы подводного электрического разряда с примесями
паров металлов и его применения в нано- и биотехнологиях. В частности, исследуется разряд, возникающий
между двумя погруженными в воду металлическими электродами. Приводится детальное описание
экспериментальной методики по реализации спектроскопической диагностики плазмы такого разряда.
Концентрацию электронов оценили на основе расширения и сдвига спектральной лини.
ПЛАЗМА ЕЛЕКТРИЧНОГО ПІДВОДНОГО РОЗРЯДУ З ДОМІШКАМИ ПАРІВ МЕТАЛІВ
В.Ф. Борецький, А.М. Веклич, Т.А. Тменова, Я. Крессо, Ф. Валенсі, К.Г. Лопатько, Є.Г. Афтанділянц
Pозглядаються особливості спектроскопії плазми підводного електричного розряду з домішками парів
металів та його застосування в нано- та біотехнологіях. Зокрема, досліджується розряд між двома
зануреними у воду металевими електродами. Наводиться детальний опис експериментальної методики з
реалізації спектроскопічної діагностики плазми такого розряду. Концентрацію електронів оцінили на основі
розширення та зсуву спектральної лінії.
|