Modification of the aluminum alloy by the radiation and mechanical treatment
The paper discusses the problem of increasing the performance properties of aluminum alloy D16 for possible more efficient use in the fields of transport engineering. A property modification tool is a high current relativistic electron beam. The irradiation occurs in a vacuum. The peculiarities of t...
Saved in:
Date: | 2020 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
Series: | Вопросы атомной науки и техники |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/194757 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Modification of the aluminum alloy by the radiation and mechanical treatment / S.E. Donets, V.V. Lytvynenko, V.F. Klepikov, Yu.F. Lonin, A.G. Ponomarev, S.Ye. Selivanov, R.I. Starovoytov, V.T. Uvarov // Problems of atomic science and tecnology. — 2020. — № 1. — С. 109-113. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194757 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1947572023-11-29T16:40:13Z Modification of the aluminum alloy by the radiation and mechanical treatment Donets, S.E. Lytvynenko, V.V. Klepikov, V.F. Lonin, Yu.F. Ponomarev, A.G. Selivanov, S.Ye. Starovoytov, R.I. Uvarov, V.T. Physics and the technology of construction materials The paper discusses the problem of increasing the performance properties of aluminum alloy D16 for possible more efficient use in the fields of transport engineering. A property modification tool is a high current relativistic electron beam. The irradiation occurs in a vacuum. The peculiarities of the layer distribution of characteristic zones resulting from irradiation are investigated. Metallographic and fractographic analysis is carried out, and microhardness values are measured. Розглядаються питання підвищення експлуатаційних властивостей алюмінієвого сплаву Д16 для можливого більш ефективного застосування в галузях транспортного машинобудування. Інструментом модифікації властивостей є сильнострумовий релятивістський електронний пучок. Опромінювання відбувається у вакуумі. З’ясовуються особливості пошарового розподілу характерних зон, які виникають внаслідок опромінення. Здійснюються металографічний та фрактографічний аналізи, проводиться вимірювання значень мікротвердості. Рассматриваются вопросы повышения эксплуатационных свойств алюминиевого сплава Д16 для возможного более эффективного применения в отраслях транспортного машиностроения. Инструментом модификации свойств является сильноточный релятивистский электронный пучок. Облучение происходит в вакууме. Выясняются особенности послойного распределения характерных зон, возникающих в результате облучения. Осуществляются металлографический и фрактографический анализы, проводится измерение значений микротвердости. 2020 Article Modification of the aluminum alloy by the radiation and mechanical treatment / S.E. Donets, V.V. Lytvynenko, V.F. Klepikov, Yu.F. Lonin, A.G. Ponomarev, S.Ye. Selivanov, R.I. Starovoytov, V.T. Uvarov // Problems of atomic science and tecnology. — 2020. — № 1. — С. 109-113. — Бібліогр.: 22 назв. — англ. 1562-6016 PACS: 07.05.Tp, 61.80.Fe, 81.70.−q, 87.63.Hg http://dspace.nbuv.gov.ua/handle/123456789/194757 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Physics and the technology of construction materials Physics and the technology of construction materials |
spellingShingle |
Physics and the technology of construction materials Physics and the technology of construction materials Donets, S.E. Lytvynenko, V.V. Klepikov, V.F. Lonin, Yu.F. Ponomarev, A.G. Selivanov, S.Ye. Starovoytov, R.I. Uvarov, V.T. Modification of the aluminum alloy by the radiation and mechanical treatment Вопросы атомной науки и техники |
description |
The paper discusses the problem of increasing the performance properties of aluminum alloy D16 for possible more efficient use in the fields of transport engineering. A property modification tool is a high current relativistic electron beam. The irradiation occurs in a vacuum. The peculiarities of the layer distribution of characteristic zones resulting from irradiation are investigated. Metallographic and fractographic analysis is carried out, and microhardness values are measured. |
format |
Article |
author |
Donets, S.E. Lytvynenko, V.V. Klepikov, V.F. Lonin, Yu.F. Ponomarev, A.G. Selivanov, S.Ye. Starovoytov, R.I. Uvarov, V.T. |
author_facet |
Donets, S.E. Lytvynenko, V.V. Klepikov, V.F. Lonin, Yu.F. Ponomarev, A.G. Selivanov, S.Ye. Starovoytov, R.I. Uvarov, V.T. |
author_sort |
Donets, S.E. |
title |
Modification of the aluminum alloy by the radiation and mechanical treatment |
title_short |
Modification of the aluminum alloy by the radiation and mechanical treatment |
title_full |
Modification of the aluminum alloy by the radiation and mechanical treatment |
title_fullStr |
Modification of the aluminum alloy by the radiation and mechanical treatment |
title_full_unstemmed |
Modification of the aluminum alloy by the radiation and mechanical treatment |
title_sort |
modification of the aluminum alloy by the radiation and mechanical treatment |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2020 |
topic_facet |
Physics and the technology of construction materials |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194757 |
citation_txt |
Modification of the aluminum alloy by the radiation and mechanical treatment / S.E. Donets, V.V. Lytvynenko, V.F. Klepikov, Yu.F. Lonin, A.G. Ponomarev, S.Ye. Selivanov, R.I. Starovoytov, V.T. Uvarov // Problems of atomic science and tecnology. — 2020. — № 1. — С. 109-113. — Бібліогр.: 22 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT donetsse modificationofthealuminumalloybytheradiationandmechanicaltreatment AT lytvynenkovv modificationofthealuminumalloybytheradiationandmechanicaltreatment AT klepikovvf modificationofthealuminumalloybytheradiationandmechanicaltreatment AT loninyuf modificationofthealuminumalloybytheradiationandmechanicaltreatment AT ponomarevag modificationofthealuminumalloybytheradiationandmechanicaltreatment AT selivanovsye modificationofthealuminumalloybytheradiationandmechanicaltreatment AT starovoytovri modificationofthealuminumalloybytheradiationandmechanicaltreatment AT uvarovvt modificationofthealuminumalloybytheradiationandmechanicaltreatment |
first_indexed |
2025-07-16T22:14:36Z |
last_indexed |
2025-07-16T22:14:36Z |
_version_ |
1837843430167805952 |
fulltext |
ISSN 1562-6016. ВАНТ. 2020. №1(125) 109
MODIFICATION OF THE ALUMINUM ALLOY BY THE RADIATION
AND MECHANICAL TREATMENT
S.E. Donets, V.V. Lytvynenko, V.F. Klepikov, Yu.F. Lonin
1
, A.G. Ponomarev
1
,
S.Ye. Selivanov
2
, R.I. Starovoytov
3
, V.T. Uvarov
1
Institute of Electrophysics and Radiation Technologies NAS of Ukraine, Kharkiv, Ukraine;
1
NSC “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2
Kherson State Maritime Academy, Kherson, Ukraine;
3
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
The paper discusses the problem of increasing the performance properties of aluminum alloy D16 for possible
more efficient use in the fields of transport engineering. A property modification tool is a high current relativistic
electron beam. The irradiation occurs in a vacuum. The peculiarities of the layer distribution of characteristic zones
resulting from irradiation are investigated. Metallographic and fractographic analysis is carried out, and
microhardness values are measured.
PACS: 07.05.Tp, 61.80.Fe, 81.70.−q, 87.63.Hg
INTRODUCTION
One of the modern ways of increasing the efficiency
of materials use in the field of transport engineering is
the use of aluminum alloys as facing, protective and
loaded structural elements. This is due to their high
enough ratio of strength to specific gravity, ductility,
corrosion resistance, toughness value. Their most
common use is in aircraft, for which a number of special
alloys have been created [1, 2]. However, the use of
aluminum-based alloys was of interest for the bus
industry and for shipbuilding [3], in the latter case, the
possibility of reducing the weight of structures
compared to the use of steel, resistance to algae grow is
particularly important. In turn, the variety of alloys is
explained by the effort to create the most adapted
material to the conditions of operational loads inherent
in a particular product, which is usually achieved by the
selection of the component composition of the alloy and
its subsequent technological operations as rolling, heat
treatment [4]. Current methods of producing alloys with
improved properties include methods of intensive
plastic deformation [5, 6], which consist of grinding and
forcing the grains due to their extrusion at different
angles through the die and torsion. A special place in
obtaining materials with specified properties takes a
direction that involves the creation of a combined
structure with a defining role to the surface layers of the
material. According to the concept [7], a deformable
solid is a multilevel system in which the surface layer is
a separate subsystem, which is simultaneously in a state
of dynamic connection with the bulk of the material.
Among the tools for modifying the surface layer itself, it
is advisable to consider those that provide the thickness
of the modified singing layer measured with the size of
the zone of formation of new phases in the material,
solid phase transformations. Among the modifiers, the
use of intense electron beams seems to be promising,
since they have a unique effect, which is that the
maximum energy absorption falls on the subsurface
layers located at a depth of about one third of the
maximum immersion of the beam. In [8], we described
the effect of increasing the elongation values before
failure in mode over plastic deformation of an alloy D16
irradiated with a high-current relativistic electron beam
(HCEB). The disadvantage of this method of treatment
was that the surface of the sample was melted on it
formed craters, it contained clear traces of uneven relief,
which imposed certain restrictions on technological
applications. We found that the effect of enhancement
of plastic properties due to irradiation was achieved due
to such effects as the grinding of grains and the
formation of their predominant orientation. Remelting
the material with an electron beam also led to the
redistribution of alloying elements, which we
established in [9] on the example of an aluminum alloy
in 1933. Thus, the modified layer is really a separate
subsystem, which is able to generate new properties of
the material during its technological processing and
further operation. The most appropriate way of
eliminating the relief seems to us the use of high-
temperature rolling, which to some extent is a partial
implementation of the method described in [10], i. e. it
is of interest to find out the features of two-stage
material processing, which involves irradiation of
HCEB with subsequent rolling.
EXPERIMENTAL MATERIALS
AND METHODS
As a material for research we have selected one of
the most common aluminum alloys D16, which is used
in many fields of transport engineering, its elemental
composition (Al, 4.8%Cu, 1.5%Mg, 0.8%Mn,
impurities Fe and Si no more 0.5%). The irradiation was
performed on an electron accelerator of the NSC
“Kharkov Institute of Physics and Technology”
TEMP-A with the following electron beam parameters:
electron energy 350 keV, beam current 2 kA, pulse
duration 5 μs, beam diameter 40 mm. The vacuum in
the beam drift chamber was 2∙10
–5
mm Hg. The
operation of placing and removing the samples from the
irradiation zone was performed through a vacuum
gateway. Rolling after irradiation was carried out at a
temperature of 250 K. The fractures of the samples were
analyzed on a JEOL JSM-840 raster electron
microscope. The microhardness was measured on a
PMT-3 microhardness meter. X-ray structural analysis
was performed on the DRON-4 installation.
110 ISSN 1562-6016. ВАНТ. 2020. №1(125)
DISCUSSION OF THE RESULTS
The use of HCEB for the modification of aluminum
alloy and the expectation of this type of processing of
new technologically promising results is based on the
mechanism of influence of the electron beam on the
material. This effect is characterized by its complexity,
which consists in the fact that the surface layer is melted
down to the transition to the gas-plasma state and
ablative emission of the substance occurs with partial
subsequent condensation [11]. The deeper layers of the
material undergo remelting, the subsequent ones fall
into the thermal impact zone. The heating rates of
cooling are 108 K/s. Such temperature gradients give
rise to zones of expansion of compression in the depth
of the target, which in some cases is manifested in a
change in the value of the defect density [9] at depths
much greater than the depth of penetration of the beam.
This treatment mode also promotes the dispersion of
saturation phases, which should improve the corrosion
resistance. This assertion is based on the fact that,
according to [3], the addition of alloying impurities such
as Zr and Cr did not lead to an increase in corrosion
resistance until heat treatment was applied. In addition
to corrosion resistance for aluminum alloys, their ability
to damp the impact loads is especially characteristic of
the shipbuilding industry, since the features of
maneuvering when entering ports under different
conditions may be associated with impact loads. As we
noted in [12], the complex mechanism acting on HCEB
materials makes it possible to consider it as a means of
obtaining shock-protective surfaces, since the modified
layer has increased values of microhardness and thus a
porous layer is formed between it and the main material
due to shock-wave stresses t (r,t), which arising as a
result of the thermoelastic effect [13]
t (r,t) = Г(r,t), (1)
where (r,t) is the density of absorbed radiation energy
at the target; r – the coordinate; t – time; Г is the
Grüneisen parameter of the substance. An additional
component of stress formation is the recoil impulse
generated by ablative emission [14]:
= ( 1), (2)
where = 1, 2 – the ratio of the specific values of the
heat capacity of the solid and plasma; – volumetric
density of radiation energy, J/cm
3
.
This set of mechanical effects is imposed on the
conditions of simultaneous movement of the melting
front and subsequent crystallization, resulting in a
certain anisotropy in the orientation of the grains. We
have suggested in [15] that such anisotropy will
facilitate the conversion of kinetic energy into its own
internal deformation energy along a tangent direction to
the surface. Such a deformation mechanism may
develop due to the aforementioned increase in plasticity
of the beam-modified layer and a higher value of
microhardness. As can be seen from Fig. 1 the beam-
modified surface (top) is substantially different from the
base irradiated layer. But the surface, which was not
machined after irradiation, has a fractured structure
(see Fig. 1,a), which is unacceptable from a
technological point of view. After mechanical rolling
(see Fig. 1,b), we observe the healing of pores and
cracks due to rolling and sealing at elevated
temperature.
a b
Fig. 1. Image of D16 alloys: after irradiation without
rolling (a); rolling after irradiation (b).
Increase x800
In both cases, the values of the microhardness were
measured in the areas known as the base region, the
transition or interface region, the melting region and the
condensed area [9]. The condensed area is the area from
which ablation of the molten substance occurred,
followed by back condensation. The melting region is
characterized by crystallization occurring under acoustic
vibrations. The values of microhardness are shown in
Table. As we can see, modifying the action of the beam
can cause a significant increase in microhardness, which
is explained by the fragmentation of the grain structure,
the accumulation in the middle of dislocation grains.
More clearly it can be seen on the nature of the material
breaking. For the interface region (indicated by a green
arrow in Fig. 2), the smallest value of microhardness is
evident, which is explained by the fact that it is transient
and contains pores, while being able to act as the
damper that distributes the field of shock mechanical
stresses. The base region (indicated by a yellow arrow
in Fig. 2) has a characteristic microhardness value with
a slight increase in its value after rolling due to
hardening. It is characterized by the viscous nature of
the hack. The area of melting has significantly higher
values of microhardness, its grains are perpendicular to
the surface, and the fracture character is fragile and
occurs outside the grain boundaries. The region of
precondensation showed the highest indicators of
microhardness (see Fig. 2 red arrow). It is characterized
by a fragile break in the body of the grains.
The value of microhardness in region of the alloy
sample
Region Bas Int Remelt Recond
МicHard МPа
Before Rolling
1180.4 931.1 1673.7 1819.1
МicHard МPа
After Rolling
1224.9 1102.3 1701.4 1968.9
In our opinion, some increase of microhardness
values after mechanical rolling should be due to the
phenomenon of hardening, whose traces are well traced
on the fractogram.
ISSN 1562-6016. ВАНТ. 2020. №1(125) 111
a
b
Fig. 2. Fractograms of the fracture of the sample after
radiation mechanical treatment
The effects of increasing microhardness are
probably also due to the redistribution of alloying
elements and the formation of new phases. In the
untreated sample, only aluminum lines were detected by
X-ray diffraction analysis (Fig. 3,a). Whereas on the
modified surface two lines are identified which
correspond to the copper compounds of Fig. 3,b. There
is also a slight increase in the aluminum lattice
parameter, which may indicate the formation of a solid
replacement solution. The main difference between the
modified surface is the narrowing of the half-widths of
the lines, which can be explained by the improvement of
the structure due to the thermal effect of the energy
release of internal stresses, which is formed due to
irradiation [16] and the action of pulses of high
pressure.
Consequently, in addition to microhardness values,
the resulting effects of such treatment make it possible
to expect, for example, increased tribological
characteristics, since the thermal action of other
concentrated energy flows [17] allows to improve the
wear resistance of friction elements. In the mode of such
material processing, more intensive redistribution of
copper and aluminum compounds can be expected,
since the material is in a non-equilibrium metastable
state for some time when the solubility of these
elements increases [18]. Bringing the observed effects
to technological implementation requires a number of
technical solutions. Because the irradiation occurs in a
vacuum, it is necessary to create a vacuum gateway to
feed material into the treatment area. Another problem
is that the generation of pulses of electron radiation is
accompanied by the output of the brake radiation.
Radiation-resistant detectors based on mercury
compounds can be used to control it [19, 20]. Metal-
polymeric materials can be used to protect measuring
devices and electronics [21, 22].
Fig. 3. Results of X-ray diffraction analysis of samples:
initial sample (a); modified sample (b)
CONCLUSION
An approach to modifying the surface properties of
an aluminum alloy by treating a HCEE with subsequent
mechanical rolling at elevated temperature is proposed
in the work, which eliminates the lack of surface
roughness due to irradiation. This is one of the
deterrents against the use of these beams for applied
purposes, since obtaining a modified layer in metals at a
depth of 100…300 m seems very promising. With
respect to aluminum alloys, mechanical rolling has the
important function of compacting the material and
rolling up pores and cracks, which allows to obtain a
technologically suitable surface with improved
performance properties.
ACKNOWLEDGEMENT
The research presented in this article was conducted
by financial support of the state budget program
“Support for the development the priority areas of
scientific researches” (Budget Financial Code 6541230).
a
b
112 ISSN 1562-6016. ВАНТ. 2020. №1(125)
REFERENCES
1. Red. Ye.N. Kablova. Istoriya aviatsionnogo
materialovedeniya: VIAM-75 let poiska, tvorchestva,
otkrytiy. M.: “Nauka”, 2007, 343 p. (in Russian).
2. I.N. Fridlyander. Alyuminiyevyye splavy v
aviaraketnoy i yadernoy tekhnike // Vestnik RAN. 2004,
v. 74, N 12, p. 1076-1081 (in Russian).
3. W. Jurczak. Study of the corrosion resistence of
ship aluminum alloys // Scientific Journal of Polish
Naval Academy. 2016 (LVII), N 3(206), p. 37-65.
4. B.I. Bondarev, V.I. Napalkov, V.I. Tararyshkin.
Modifitsirovaniye alyuminiyevykh splavov. M.:
“Metallurgiya”, 1979, 223 p. (in Russian).
5. R.Z. Valiyev. Nanostrukturnyye materialy,
poluchennyye intensivnoy plasticheskoy deformatsiyey.
M.: “Logos”, 2000, 272 p. (in Russian).
6. B. Rakhadilov, G. Uazyrkhanova, A. Myakinin,
Z. Uazyrkhanova. Effect of Intensive Plastic
Deformation on Microstructure and Mechanical
Properties of Aluminum Alloys // IOP Conf. Series:
Materials Science and Engineering. 2016, v. 142,
p. 012035.
7. V.E. Panin, A.V. Panin. Effect of the surface
layer in a solid under deformation // Physical
Mezomechanics. 2005, v. 8, N 5, p. 7-15.
8. V.V. Bryukhovetskij, V.V. Litvinenko, V.F. Kle-
pikov, R.I. Kuznetsova, V.F. Kivshik, V.P. Pojda,
V.T. Uvarov. Effect of the pulsed electron irradiation on
superplasticity properties of duraluminium // Fizika i
khimiya obrabotki materialov. 2002, v. 4, p. 33-38 (in
Russian).
9. A.G. Kobets, P.R. Horodek, Yu.F. Lonin,
V.V. Lytvynenko, A.G. Ponomarev, O.A. Startsev,
V.T. Uvarov. Melting effect on high current electron
beam on aluminum alloy 1933 // Surface Engineering
and Applied Electrochemistry. 2015, v. 51, N 5, p. 478-
482.
10. T. Hausol, H.W. Hoppel, M. Goken.
Microstructure and mechanical properties of
accumulative roll bonded aluminum alloy AA5754 //
Journal of Physics: Conference Series. 2010, v. 240,
p. 21-28.
11. V.F. Klepikov, V.V. Lytvynenkoo, Yu.F. Lo-
nin, et al. The dynamics of the gas – plasma torch
formed by the high current beam action on solid state
targets // Problems of Atomic Science and Technology.
Series “Plasma Physics” (15). 2009, N 1(59), p. 119-
121.
12. V.I. Boyko, A.N. Valyayev, A.D. Pogrebnyak.
Modifikatsiya metallicheskikh materialov impul'snymi
moshchnymi puchkami chastits // UFN. 1999, v. 169,
N 11, p. 1243-1271.
13. V.D. Volovik, V.T. Lazurik-El'tsufin. Akusti-
cheskiy effekt puchkov zaryazhennykh chastits v
metallakh // Fizika tverdogo tela. 1973, v. 15(8),
p. 2305-2307 (in Russian).
14. S.S. Batsanov, B.A. Demidov, L.I. Rudakov.
Ispol'zovaniye sil'notochnogo REP dlya
osushchestvleniya strukturnykh prevrashcheniy //
Pis'ma v ZHETF. 1979, v. 30(9), p. 611-613 (in
Russian).
15. M.I. Bazaleev et al. Aluminum alloys shock
protective surface modified by the high current electron
beam // Journal of Surface Physics and Engineering.
2017, v. 2, N 1, p. 38-43.
16. V.T. Uvarov et al. Radiation acoustic control
over the thermal parameter of construction materials
irradiated by intense relativistic electron beam // Phys.
of Part. and Nucl. Latter. 2014, v. 11, N 3, p. 274-281.
17. B. Antoszewski, V. Tarelnik. Laser texturing of
sliding surfaces of bearings and pump seals // Applied
Mechanics and Materials. 2014, v. 630, p. 301-307.
18. S.E. Donets et al. Aluminum surface coating of
copper using high-current electron beam // Problems of
Atomic Science and Technology. Series “Plasma
Electronics and New Methods of Acceleration” (9).
2015, N 4(98), p. 302-305.
19. А.А. Zaharchenko, А.I. Skrypnyk, М.А. Kha-
zhmuradov, E.М. Prohorenko, V.F. Klepikov,
V.V. Lytvynenko. Simulation of characteristics of
gamma-radiation detectors based on mercury
compounds // Problems of Atomic Science and
Technology. Series “Nuclear Physics Investigations”
(60). 2013, N 3(85), p. 231-235.
20. Priyanthi M. Amarasinghe et al. Growth of
high quality mercurous halide single crystals by
physical vapor transport method for AOM and radiation
detection applications // Journal of Crystal Growth.
2016, v. 450, p. 96-102.
21. E.M. Prokhorenko et al. Metal containing
composition materials for radiation protection //
Problems of Atomic Science and Technology. Series
“Physics of Radiation Effect and Radiation Materials
Sciences”. 2014, N 4(92), p. 125-129.
22. E.M. Prokhorenko et al. Improvement of
characteristics of composite materials for radiation
biological protection // Problems of Atomic Science and
Technology. Series “Nuclear Physics Investigations”
(61). 2013, N 6(88), p. 240-243.
Статья поступила в редакцию 11.10.2019 г.
https://inis.iaea.org/search/search.aspx?orig_q=author:%22Bryukhovetskij,%20V.V.%22
https://inis.iaea.org/search/search.aspx?orig_q=author:%22Litvinenko,%20V.V.%22
https://inis.iaea.org/search/search.aspx?orig_q=author:%22Klepikov,%20V.F.%22
https://inis.iaea.org/search/search.aspx?orig_q=author:%22Klepikov,%20V.F.%22
https://inis.iaea.org/search/search.aspx?orig_q=author:%22Kuznetsova,%20R.I.%22
https://inis.iaea.org/search/search.aspx?orig_q=author:%22Kivshik,%20V.F.%22
https://inis.iaea.org/search/search.aspx?orig_q=author:%22Pojda,%20V.P.%22
https://inis.iaea.org/search/search.aspx?orig_q=author:%22Pojda,%20V.P.%22
https://inis.iaea.org/search/search.aspx?orig_q=author:%22Uvarov,%20V.T.%22
https://www.scopus.com/sourceid/4700151914?origin=recordpage
https://www.scopus.com/sourceid/4700151914?origin=recordpage
ISSN 1562-6016. ВАНТ. 2020. №1(125) 113
MОДИФИКАЦИЯ АЛЮМИНИЕВОГО СПЛАВА
РАДИАЦИОННОЙ И МЕХАНИЧЕСКОЙ ОБРАБОТКАМИ
С.Е. Донец, В.В. Литвиненко, В.Ф. Клепиков, Ю.Ф. Лонин, А.Г. Пономарёв, С.Е. Селиванов,
Р.И. Старовойтов, В.T. Уваров
Рассматриваются вопросы повышения эксплуатационных свойств алюминиевого сплава Д16 для
возможного более эффективного применения в отраслях транспортного машиностроения. Инструментом
модификации свойств является сильноточный релятивистский электронный пучок. Облучение происходит в
вакууме. Выясняются особенности послойного распределения характерных зон, возникающих в результате
облучения. Осуществляются металлографический и фрактографический анализы, проводится измерение
значений микротвердости.
MОДИФІКАЦІЯ АЛЮМІНІЄВОГО СПЛАВУ
РАДІАЦІЙНОЮ ТА МЕХАНІЧНОЮ ОБРОБКАМИ
С.Є. Донець, В.В. Литвиненко, В.Ф. Клепіков, Ю.Ф. Лонін, А.Г. Пономарьов, С.Є. Селіванов,
Р.І. Старовойтов, В.T. Уваров
Розглядаються питання підвищення експлуатаційних властивостей алюмінієвого сплаву Д16 для
можливого більш ефективного застосування в галузях транспортного машинобудування. Інструментом
модифікації властивостей є сильнострумовий релятивістський електронний пучок. Опромінювання
відбувається у вакуумі. З’ясовуються особливості пошарового розподілу характерних зон, які виникають
внаслідок опромінення. Здійснюються металографічний та фрактографічний аналізи, проводиться
вимірювання значень мікротвердості.
|