A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls
The use of a two-stage mechanism for the acceleration of charged particles is proposed. The principle of acceleration is based on the use of the fractal properties of the wave spectrum of a corrugated plasma waveguide with superconducting walls. The first stage provides for the excitation of a corru...
Gespeichert in:
Datum: | 2019 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/195167 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls / I.V. Tkachenko, V.I. Tkachenko // Problems of atomic science and technology. — 2019. — № 4. — С. 59-64. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195167 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1951672023-12-03T16:37:14Z A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls Tkachenko, I.V. Tkachenko, V.I. Advanced methods of acceleration The use of a two-stage mechanism for the acceleration of charged particles is proposed. The principle of acceleration is based on the use of the fractal properties of the wave spectrum of a corrugated plasma waveguide with superconducting walls. The first stage provides for the excitation of a corrugated plasma waveguide by short electron bunches in the direction of motion (the length of the bunch is significantly less than the period of the corrugation). On the second stage the test charged particles accelerates in an infinite number of harmonics of the electric field exited by an electron bunches. Calculations show that with the implementation of such an acceleration mechanism, the average speed of a non-relativistic test particle can increase several times, and its acceleration length can be up to one meter. Запропоновано використання двоступеневого механізму прискорення заряджених частинок. Принцип прискорення заснований на використанні фрактальних властивостей хвильового спектра гофрованого плазмового хвилеводу з надпровідними стінками. Перший ступінь забезпечує збудження гофрованого плазмового хвилеводу короткими в напрямку руху електронними згустками (довжина згустку значно менше періоду гофра). Другий ступінь здійснює прискорення пробних заряджених частинок у збудженому електронними згустками нескінченному за кількістю гармонік електричному полі. Розрахунки показують, що при реалізації такого механізму прискорення середня швидкість нерелятивістської пробної частинки може збільшуватися в кілька разів, а довжина її прискорення може становити відстань до одного метра. Предложено использование двухступенчатого механизма ускорения заряженных частиц. Принцип ускорения основан на использовании фрактальных свойств волнового спектра гофрированного плазменного волновода со сверхпроводящими стенками. Первая ступень обеспечивает возбуждение гофрированного плазменного волновода короткими в направлении движения электронными сгустками (длина сгустка значительно меньше периода гофра). Вторая ступень осуществляет ускорение пробных заряженных частиц в возбужденном электронными сгустками бесконечном по количеству гармоник электрическом поле. Расчеты показывают, что при реализации такого механизма ускорения средняя скорость нерелятивистской пробной частицы может увеличиваться в несколько раз, а длина ее ускорения может составлять расстояние до одного метра. 2019 Article A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls / I.V. Tkachenko, V.I. Tkachenko // Problems of atomic science and technology. — 2019. — № 4. — С. 59-64. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.40.Fd; 52.40.Mj http://dspace.nbuv.gov.ua/handle/123456789/195167 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Advanced methods of acceleration Advanced methods of acceleration |
spellingShingle |
Advanced methods of acceleration Advanced methods of acceleration Tkachenko, I.V. Tkachenko, V.I. A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls Вопросы атомной науки и техники |
description |
The use of a two-stage mechanism for the acceleration of charged particles is proposed. The principle of acceleration is based on the use of the fractal properties of the wave spectrum of a corrugated plasma waveguide with superconducting walls. The first stage provides for the excitation of a corrugated plasma waveguide by short electron bunches in the direction of motion (the length of the bunch is significantly less than the period of the corrugation). On the second stage the test charged particles accelerates in an infinite number of harmonics of the electric field exited by an electron bunches. Calculations show that with the implementation of such an acceleration mechanism, the average speed of a non-relativistic test particle can increase several times, and its acceleration length can be up to one meter. |
format |
Article |
author |
Tkachenko, I.V. Tkachenko, V.I. |
author_facet |
Tkachenko, I.V. Tkachenko, V.I. |
author_sort |
Tkachenko, I.V. |
title |
A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls |
title_short |
A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls |
title_full |
A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls |
title_fullStr |
A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls |
title_full_unstemmed |
A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls |
title_sort |
fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2019 |
topic_facet |
Advanced methods of acceleration |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195167 |
citation_txt |
A fractal accelerator on the basis of a corrugated plasma waveguide with superconducting walls / I.V. Tkachenko, V.I. Tkachenko // Problems of atomic science and technology. — 2019. — № 4. — С. 59-64. — Бібліогр.: 15 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT tkachenkoiv afractalacceleratoronthebasisofacorrugatedplasmawaveguidewithsuperconductingwalls AT tkachenkovi afractalacceleratoronthebasisofacorrugatedplasmawaveguidewithsuperconductingwalls AT tkachenkoiv fractalacceleratoronthebasisofacorrugatedplasmawaveguidewithsuperconductingwalls AT tkachenkovi fractalacceleratoronthebasisofacorrugatedplasmawaveguidewithsuperconductingwalls |
first_indexed |
2025-07-16T23:00:35Z |
last_indexed |
2025-07-16T23:00:35Z |
_version_ |
1837846328001953792 |
fulltext |
ISSN 1562-6016. ВАНТ. 2019. №4(122) 59
A FRACTAL ACCELERATOR ON THE BASIS OF A CORRUGATED
PLASMA WAVEGUIDE WITH SUPERCONDUCTING WALLS
I.V. Tkachenko1, V.I. Tkachenko1,2
1National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: tkachenko@kipt.kharkov.ua
The use of a two-stage mechanism for the acceleration of charged particles is proposed. The principle of acceler-
ation is based on the use of the fractal properties of the wave spectrum of a corrugated plasma waveguide with su-
perconducting walls. The first stage provides for the excitation of a corrugated plasma waveguide by short electron
bunches in the direction of motion (the length of the bunch is significantly less than the period of the corrugation).
On the second stage the test charged particles accelerates in an infinite number of harmonics of the electric field
exited by an electron bunches. Calculations show that with the implementation of such an acceleration mechanism,
the average speed of a non-relativistic test particle can increase several times, and its acceleration length can be up
to one meter.
PACS: 52.40.Fd; 52.40.Mj
INTRODUCTION
The term wakefield acceleration indicates that Che-
renkov radiation [1], propagating behind the particle in
a medium or a slowing structure, is used to accelerate a
low-current bunch to higher energies [2].
Currently, this method of acceleration is the subject
of intensive research (see, for example, [3, 4]) and in
this direction quite encouraging results have been ob-
tained.
However, the investigations of the wakefield accel-
eration in periodic plasma waveguides (for example,
corrugated sinusoidally) remain an open question con-
cerning accounting of the full set of radial and longitu-
dinal electric fields harmonics.
Typically, one or more resonant [2] eigenmodes are
taken into account from an infinite number them, and
the rest is neglected because of assumptions about their
weak interaction with the accelerated particles.
In fact, unaccounted waves, despite their small con-
tribution to the acceleration of charged particles, can
greatly change the dispersion of the plasma waveguide
[5, 6].
Therefore, the study of taking into account of the
full spectrum of a superconducting corrugated wave-
guide with plasma filling to accelerate charged particles
is, as before, a very topical issue.
The task is to indicate the plasma and corrugated
waveguide parameters, which would ensure the acceler-
ation of charged particles over the shortest interaction
length.
To solve this problem, it is necessary, first, to study
the dispersion properties of the waveguide structure,
which takes into account absolutely all eigenmodes,
and, secondly, to study their interaction with accelerated
charged particles.
When considering the latter issue, the problem of
excitation of such waveguides, for example, by charged
particles, is to be solved and then the excited wave spec-
trum utilization for the acceleration of the test charged
particles may be proposed.
According to the method of excitation of a longitu-
dinal electric field in a plasma, the proposed method of
acceleration can be referred to as the bunch method [2].
Therefore, we restrict ourselves to considering just
such an acceleration scheme: we describe the dispersion
properties of corrugated plasma waveguides, investigate
the possibility of their excitation by electron bunches,
and finally consider the possibility of using such sys-
tems to accelerate test charged particles.
1. FEATURES OF THE DISPERSION
PROPERTIES OF CORRUGATED PLASMA
WAVEGUIDES
The study of the dispersion properties of waveguides
with an ideally conducting metal wall, corrugated ac-
cording to the law 0( ) (1 cos( ))H z a k za= + and filled
with plasma (here 00 2 kL π= is a corrugation period,
b
a
a = is a corrugation parameter; b is a corrugation
depth, 2a is a transverse size of the waveguide) showed
the formation of a dense wave spectrum [7 - 9].
This means that in the phase space at any deliberate-
ly selected point with coordinates ( )0 0,qω , where:
0ωω = , 03 qk = both the frequency and the longitudi-
nal wave number, there exists an infinite number of
waves.
In this case, a charged particle that moves in such
medium with a velocity 0V , will resonantly interacts
with an infinite number of longitudinal waves, that sat-
isfy the requirement of phase matching 0 0 0V qω= , and
are characterized by both longitudinal 0q and trans-
verse
2
lk
a a
π π
⊥ = + wave numbers (case of flat geome-
try, 0; 1; 2;...,l K= ± ± , K − integer).
Although the excited waves are polarized due to the
discrete nature of the wave spectrum (their phase veloci-
ty is equal to фV , and the group wavelength is zero),
the presence of the transverse component of the wave
vector gives them the character of Cherenkov waves [1].
Moreover, the velocity of the particle must satisfy the
condition: 0
0 ф
q
V V
k⊥
> .
mailto:tkachenko@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2019. №4(122) 60
The resonant nature of particles interaction with the
waveguide eigenwaves requires that the parameter m∆
introduced in [10 - 13] should be considered zero. In
addition, depending on which of the forbidden bands of
the corrugated plasma waveguide the frequency 0ω
falls, it is necessary to take into account the correspond-
ing decrement 0( )d ω , which is proportional to the depth
of the corrugation a (in the opacity band, the amplitude
of wave A decays according to the law dteAA −= 0 ). In
this case, the reactive bunch instabilities [10 - 12] may
change to dissipative [11, 14], which is non-threshold,
and is characterized by smaller values of increments.
Thus, to study the acceleration of charged particles
in corrugated plasma waveguides with superconducting
walls, it is necessary to study the problem of the reso-
nant interaction of charged particles with a plasma in
the presence of a dense wave spectrum.
2. ANALYSIS OF THE EXCITED WAVE
SPECTRUM OF A CORRUGATED PLASMA
WAVEGUIDE
Lets consider a two-step scheme for the acceleration
of charged particles in an infinite corrugated plasma
waveguide.
The first step is the excitation of a corrugated plasma
waveguide with a short electron bunch in the direction
of the particles longitudinal movement (the length of the
bunch is significantly less than the period of the corru-
gation).
The second step is the acceleration of test charged
particles in an electric field excited by an electron bunch
of an infinite number of harmonics.
Calculations of the dispersion properties of a flat
plasma filled corrugated waveguide, carried out in [7 -
9], allow us to imagine the strength of the longitudinal
electric field .zE in the form:
( ) 3( , , )
ik z i tnE r z t a f r ez n nn
ω∞ −
= ⋅∑
= −∞
, (1)
where an − harmonic amplitudes; ( )f rn − membrane
functions that describe the transverse distribution of the
electric field strength and all are equal to 1 at 0r → ;
3 3 0nk k nk= + ; 3k − longitudinal wave number; ω −
wave frequency.
Let us consider the excitation of a field in the form
(1) and determine the possibility of setting the coeffi-
cients na necessary for acceleration. The method of
incomplete numerical simulation can show that a short
electron bunch which parameters correspond to the pa-
rameters of a very narrow forbidden band in a corrugated
plasma waveguide (decrement 0( )d ω is small compared
to the bunch instability increment) excites wave (1), but
with special conditions for the coefficients na : a suffi-
ciently large number of these coefficients coincide with
each other (Fig. 1). This statement can be justified by a
series of simple transformations of the expression for the
field (1). As a result of such transformations, it is easy to
obtain the following total δ-functional dependence of the
electric field intensity on time:
0 0(0, , ) ( )n
n
i tE z t E e t tz
ω δ
=−∞
∞−= −∑ , (2)
where 0E is the amplitude, generally weakly dependent
on time.
In expression (2), due to the smallness of the contri-
bution, the balance of the sum, which is determined by
the coefficients of expression (1) remaining from the
first sum, not equal to each other, is omitted.
In Fig. 1 shows the temporal dynamics of the electric
field strength at a particular point in space, obtained by
the method of incomplete numerical simulation, similar
to the calculations carried out in [2] and the sources cited
there. It can be seen that the periodic amplitude pulsations
are of sufficient magnitude to approximate them by a sum
of δ-functional dependencies.
Fig. 1. The temporal dynamics of the electric field
strength at a single point in space ζ with the number
of modes M = 100, the absorption index d = 0.01
Thus, when a short electron bunch moves in a corru-
gated plasma waveguide, a spectrum (1) is excited, in
which K harmonics can be equal to each other. From the
mathematical point of view, this possibility arises be-
cause in the infinite determinant obtained in the study of
the dispersion properties of a flat corrugated plasma
waveguide, the term K coincides. In the case when
K >> 1 (1 K − the multiplicity points of the intersection
of the dispersion curves [8 - 10]), the infinite sum of
harmonics can be represented as an infinite sum δ-
functions. In expression (2), the amplitude 0E is the
amplitude of K harmonics, nt − the time that determines
the passage of the n-th period of the waveguide by the
bunch.
3. ANALYSIS OF THE CORRUGATED
PLASMA WAVEGUIDE EXCITED
WAVE SPECTRUM
Now, after the accelerating field (2) is determined,
let’s consider the motion of a test positively charged
particle with the mass i em m= Λ ⋅ (where Λ >> 1) in
this field. The change in time of its coordinates ζ near
the axis of the waveguide is described by the equation:
2
1 3 0 0
02
( / ) ( / )d i k k n ie
d n
ζ ζ ω τ
τ
e− ∞ + − Ω= Λ ∑
= −∞
, (3)
where 0 0, ,t zkτ ω ζ= = 0 0
0 2
0
2
,
e
ek E
m
π
ω
e = 0 iω ωΩ = − ∆ ,
0ω − is the frequency at which the intersection of an
infinite number of dispersion curves of a corrugated
ISSN 1562-6016. ВАНТ. 2019. №4(122) 61
plasma waveguide is observed, ω∆ − the width of the
forbidden band, which corresponds to the frequency 0ω ,
3k − is the longitudinal wave number. We assume that
the decrement is small, and in the calculations should be
assumed to zero.
Equation (3) in a view as the above can be reduced
to the form:
3
2
1 0 0
02
( )
( ( ) 2 )
k
i i i
d ke n
nd
ωζ τ τ
ζ ω δ ζ τ π
τ
e−
∆
− + ∞
=Λ −∑
=−∞
. (4)
Let’s find a solution to this equation.
First of all, we note that in the time intervals
1k kτ τ τ +< < , where kτ is determined from the equation
( ) 2k kζ τ π= , the test particle moves with a constant
velocity, the dimensionless value of which we denote as
0k kV w V= , where kw is a test particle’s velocity in
the interval 1k kτ τ τ +< < , 0V is the initial velocity of the
test particle. At time kτ , the velocity abruptly changes
from kV to 1kV + . The relationship between these veloci-
ties can be obtained from equation (4) by performing its
integration within 1, ( )k k k kτ e τ τ e e τ τ+− < < + << −
and then directing the small parameter e to zero. As a
result, one can get a recurrent relation that determines
the test particle’s velocity at each of the acceleration
intervals:
1
0 3
0 0
2 2exp( ) cos( 2 ).1
kk kV V kk k V V k Vk k k
ω π ππ
ω
e−Λ ∆
= + − ⋅ −+
In an infinite corrugated plasma waveguide, the pa-
rameter 3 0k k can take any value less than one, i.e. it is
determined by its fractional part (if the parameter 3 0k k
is greater than one, then the integer part will be sub-
tracted due to the periodicity of the function, the argu-
ment of which it is). Therefore, in further calculations,
we will assume this parameter to be less than one.
Fig. 2 shows the graphs of the growth rate of a test
positively charged particle’s velocity as a function of
distance, measured by the number of periods of a corru-
gated plasma waveguide k. In the calculations, the fol-
lowing parameters of the accelerating system were cho-
sen: 1
0e−Λ = 0.15; 0ω ω∆ = 0.02.
Fig. 2. Dependence of the positively charged test parti-
cle’s velocity at the distance 0L L k= versus
of the parameter value: 1 − χ =0.1; 2 − χ =0.3;
3 − χ =0.5; 4 − χ =0.7; 5 − χ =0.9; 6 − χ =0.0
(numbering of curves is located under
the corresponding curves)
It can be seen from the figure that acceleration is
more efficient near one parameter value 0.3χ = . For
other values of the parameter χ , either a lower acceler-
ation rate or a decrease in the initial velocity is ob-
served, i.e. there is a deceleration.
Thus, the above example confirms the possibility of
the two-step mechanism for the acceleration of charged
particles in a plasma waveguides with a superconduct-
ing corrugated walls. In this case, the non-relativistic
dimensionless velocity of the test particle may increase
several times.
4. THE INVESTIGATION OF THE TWO-STEP
METHOD OF CHARGED PARTICLES
ACCELERATION
For a more detailed analysis of the proposed two-
step acceleration of charged particles, we use the meth-
od of incomplete numerical simulation, which has re-
cently been used to study the generation of electromag-
netic waves in plasma waveguides [10 - 14].
In our case, we will investigate the motion of parti-
cles of two types in the plasma in the presence of a large
number of waves. In the longitudinal direction, we as-
sume the plasma is unlimited, and we exclude trans-
verse boundary from consideration due to a strong ex-
ternal magnetic field, which allows the use of a one-
dimensional description of the motion of charged parti-
cles. For this, it is necessary that the condition
2 1/2
0 0(4 )e e e e eeH m c e n mω π= >> Ω = to be fulfilled
where en0 is equilibrium plasma density; em is the
electron mass; 0H is external magnetic field intensity;
c is the speed of light.
First, we define the type of electromagnetic field that
will be excited, and then accelerate the particles. The
wave packet in plasma is represented as the sum of a
large number of waves that move with different phase
velocities:
( )
1
( , ) ( )sin
M
m m m m
m
E z t E t k z t tω φ
=
= − + ∑ . (5)
Here M >> 1 is a large number of modes that propa-
gate in the plasma; mmmm kE ϕω ,,, are an ampli-
tude of electric field, frequency, wave number and
phase of the m-th mode.
We consider the electric field intensity in the form
that takes into account only resonant harmonics. To do
this, we assume that 0ωω ∆= mm , 0kmkm ∆=
( 1...m M= ), where 0ω∆ , 0k∆ are the conditional size
of the perturbation waveform partitioning; 0k∆ is cho-
sen in such a way that the relation 000 ω∆=∆ Vk is
fulfilled. Due to such transformations, we obtain the
expression for the wave packet:
( ) ( )0 0
1
( , ) ( )sin
M
m m
m
E z t E t m k z V t tφ
=
= ∆ − + ∑ . (6)
The system of equations that describes the time vari-
ation of the amplitudes and phases of the electric field
(6) can be obtained by substituting the results of inte-
grating the equations of plasma particles motion into the
ISSN 1562-6016. ВАНТ. 2019. №4(122) 62
Poisson equation using the harmonic oscillation method
[10 - 12].
Considering the above, we can write the equations
(in dimensionless variables) which describe the interac-
tion between the wave spectrum of the corrugated plas-
ma waveguide and charged particles (electrons and
positive charged test particles):
1
1 sin( )
N
m
i m m
i
d
m d
d N
ξ φ
τ
e e
=
= ⋅ + −∑ , (7)
1
1 cos( )
N
m
i m
im
d
m
d N
φ
ξ φ
τ e =
= ⋅ +
⋅ ∑ , (8)
where 1/3
0 0k V tτ β= ,
2/3
0
4
m
m
ob
E k
en
β
π
e = , 1ob oen nβ = << −
is the ratio of the equilibrium density of the bunch and
plasma, respectively. Charged particles are modeled
using N layers moving with velocity 0V (1 i N≤ ≤ , i −
is the layer number), the coordinate of which is given in
the form ( )0 0i ik z V tξ = ∆ − .
The system of equations (7), (8) must be supple-
mented by equations that describe the motion of charged
particles of a bunch (in dimensionless variables):
12
1
2
1
1
1
sin( ), 1 ,
sin( ), 1 .
M
m i m
mi
M
m i m
m
m i N
d
d
m N i N
ξ φ
ξ
τ
ξ φ
e
e
=
−
=
− + ≤ ≤=
Λ ⋅ + + ≤ ≤
∑
∑
(9)
Equations (9) describe the motion of electrons (up-
per expression on the right side of (9)) and positively
charged test particles with mass Λ and quantity 2N
(lower expression on the right side of (9)). The total
number of charged particles is N: 1 2N N N+ = .
From the equations (7)-(9) in the absence of absorp-
tion can be obtained the integral I which was helped us
to control the accuracy of the numerical calculations.
This integral has the following form:
1 2
1 1
1
1 11
2 2
2 2
1 cos .
M M
e
m m
N N
i i N
N Nm mI V V
N N
d di i t
N d N d
e e
ξ ξ
τ τ
= =
= = +
= + −Λ ⋅ = +∑ ∑
Λ
+ ⋅ − =∑ ∑
(10)
System (7) - (9) satisfies the condition of the particle
coordinate's periodicity − the equations do not change
when replaced 2i i kζ ζ π→ + . In addition, there is the
following symmetry of the amplitudes and phases of the
field: ,m m m mφ φe e− −= − = − .
The system of equations (7) - (9) was investigated
numerically using the method of bunches particles mod-
eling by large particles [1, 10 - 12] with the following
values of the counting parameters: the number of modes
M = 50…100; the initial coordinates of the electron lay-
ers iζ are distributed on the (0…2π) interval in the
form of two large particles (the number of layers is N =
2); the initial distribution of the amplitudes of the wave
disturbances was set to be uniform with the initial val-
ues of the amplitudes 210me −= and phases 310mφ
−=
for all values of m.
5. NUMERICAL SIMULATION RESULTS
Let us discuss the results of numerical simulation of
the interaction of particles of two types with a plasma
corrugated waveguide's dense wave spectrum. The
choice of one decrement value for two types of particles
in equation (7) indicates that we have chosen such sys-
tem parameters for which the interaction occurs in the
same forbidden band.
The ratio of the number of test particles in the
bunch, which is accelerated, and electrons in the bunch,
which generates oscillations in the waveguide, is deter-
mined by the parameter 1 2N Nθ = [15]. First, as a test
calculation, consider the acceleration of such test parti-
cles as positrons. Let the number of particles in bunches
be: 1θ = .
In Fig. 3 the time variations of the average velocity
of the test particle V , electron bunch eV , and integral
of the system of equations in the absence of absorption
(d = 0) I are shown. In the calculations it was assumed
that the initial velocities of the particles are the same.
Fig. 3. Dependence of the average velocities of the test
particle V and the electron bunch eV
on the dimensionless time τ : 1 – d = 0,0; 2 – d = 0.2
It can be seen from the figure that there is a syn-
chronous change in the average velocities of the test
particle and the electron bunch. In the absence of ab-
sorption, the integral remains almost unchanged, which
indicates the reliability of the obtained numerical re-
sults.
Let’s now consider the acceleration of a heavy (Λ>> 1)
positively charged particle.
In Fig. 4 shows the temporal dynamics of the aver-
age velocities of particles which move in a corrugated
plasma waveguide.
In the numerical simulation, the following parameter
values were specified: M = 50; N = 2; d = 0.2; 10Λ = at
the same initial particle velocities.
It follows from the figure that at the beginning of the
interaction, the average velocity of the accelerating par-
ticles increases more slowly than the main bunch loses.
In the absence of absorption, the integral of the system
changes by a relatively small value at 2.5τ ≤ , i.e. at
such time intervals when acceleration of test particles is
observed.
ISSN 1562-6016. ВАНТ. 2019. №4(122) 63
Fig. 4. Dependence of average velocities of a heavy test
particle V and electron bunch eV on dimensionless
time τ : 1 − d = 0; 2 − d = 0.2
The difference between the energies of these bunch-
es is concentrated in the internal energy of the plasma
and in the energy of the oscillations.
The above examples of test particles acceleration are
made for cases when the initial velocities of particles of
two types are comparable. This explains the small value
of the change in the average velocity of the test particle.
If the initial velocity of the test particle is less than the
initial velocity of the electron bunch, then the average
momentum of the test particle may increase twice. This
is indicated by numerical calculations, the result of one
of which is shown in Fig. 5.
Fig. 5. Dependence of average velocities of a heavy test
particle V and an electron bunch eV on dimensionless
time τ : 1 − d = 0; 2 − d = 0.02
Calculations carried out for different values of the
initial velocities of the test particle and the accelerated
bunch, show that the greatest increase in the average
speed of the test particle is observed at the initial speed
of the test particle
0
1.1d d
τ
ς τ
=
= − . The results of
such a calculation are shown in Fig. 5. The same in-
crease in the average velocity was established in a test
calculation for positrons. For large values of the initial
velocity
0
1.1d d
τ
ς τ
=
> − the acceleration of the test
particle is not observed. Smaller values of the initial
velocity lead to a small change in the average velocity
of the test particle. Accounting for the absorption of
oscillations in the forbidden band (see Figs. 4, 5, curve
2) increases the acceleration rate of the test particle.
Let’s now estimate the length at which the accelera-
tion of the test particles is observed, and compare with
the result of the analysis of the wave spectrum corrugat-
ed plasma waveguide.
Based on the results of calculations shown in Fig. 1,
one can estimate the acceleration length of the test par-
ticle. It is determined by the ratio
1
1 0 0100 2 100L L kπ −≈ ⋅ = ⋅ ⋅ . On the other hand, the ac-
celeration distance of the test particle, obtained as a re-
sult of numerical calculations, gives the dimensionless
acceleration time 9...10τ ≈ , which, in terms of the dis-
tance passed by the main bunch, gives the acceleration
length 1
32 10 −⋅= kL . A comparison of these values
makes it possible to state that the acceleration distances
are of the same order already at the plasma density
05.03/1 ≈β .
CONCLUSIONS
It is shown that in a corrugated superconducting
plasma-filled waveguide, it is possible to use a two-step
mechanism for the acceleration of charged particles.
The first step is the excitation of a corrugated plasma
waveguide with a short electron bunch in the direction
of the longitudinal movement (the length of the bunch is
significantly less than the period of the corrugation).
The second step is the acceleration of test charged parti-
cles in an electric field excited by an electron bunch of
an infinite number of harmonics. Calculations show that
with the implementation of such an acceleration mecha-
nism, the average velocity of a test non-relativistic par-
ticle may increase several times.
A system of equations which describes a two-step
method of the charged particles acceleration is obtained.
Test calculations show that the proposed accelera-
tion mechanism ensures complete transfer of the elec-
tron bunch energy to the energy of a test particle of the
same mass, but with a charge of opposite sign.
Numerical calculations have shown that the acceler-
ation length of the test particle can be up to one meter
(under 0 02 /k Lπ= cm-1) with a plasma density satisfy-
ing the condition 1/3 0.05β ≈ .
REFERENCES
1. B.M. Bolotovskij. Teoriya effekta Vavilova-
Cherenkova // UFN. 1957, t. 42, v. 3, p. 201-246 (in
Russian).
2. V.A. Balakirev, N.I. Karbushev, A.O. Ostrovskij,
Yu.V. Tkach. Teoriya cherenkovskih usilitelej i gen-
eratorov na relyativistskih puchkah. Kiev. “Naukova
dumka”, 1993, 208 p. (in Russian).
3. V.A. Balakirev, V.I. Karas’, I.M. Onishenko, et al.
Doslidzhennya zbudzhennya kilvaternih poliv
relyativistskimi elektronnimi zgustkami // UFZh.
1998, v. 43, iss. 9, p. 1160-1166 (in Ukrainian).
4. I.N. Onishenko. Charged particle acceleration by
wakefields excited in dielectric waveguide by a
ISSN 1562-6016. ВАНТ. 2019. №4(122) 64
sequence of electron bunches (overview) // Prob-
lems of Atomic Science and Technology. Series
“Plasma Electronics and New Methods of Accelera-
tion”. 2004, № 4, p. 97-103.
5. N.A. Azarenkov, I.V. Tkachenko, V.I. Tkachenko.
Features of dispersive characteristics of axi-
symmetric electromagnetic waves of magnetoactive
plasma taking place in the ideally conducting wave-
guide with finit depth of a ripple // Problems of
Atomic Science and Technology. Series “Plasma
Electronics and New Methods of Acceleration”.
2008, № 4, p. 54-59.
6. N.A. Azarenkov, I.V. Tkachenko, V.I. Tkachenko.
Shodyashiesya beskonechnye opredeliteli v issledo-
vaniyah periodicheskih plazmennyh volnovodov i
analiz ih vliyaniya na dispersiyu elektromagnitnyh
voln // Visnik Harkivskogo nacionalnogo universite-
tu. Seriya «Matematichne modelyuvannya. Infor-
macijni tehnologiyi. Avtomatizovani sistemi up-
ravlinnya». 2010, № 926, v. 15, p. 11-24 (in Rus-
sian).
7. V.I. Lapshin, O.F. Stoyanov, I.V. Tkachenko,
V.I. Tkachenko. Obchislennya dispersijnih harakter-
istik plosko paralelnogo gofrovanogo plazmovogo
hvilevodu // Visnik Lviv. universitetu. Seriya
fizichna. 2006, v. 39, p. 160-162 (in Ukrainian).
8. V.I. Lapshyn, I.V. Tkachenko, V.I. Tkachenko. Pe-
culiarities of dispersion characteristics of sinusoidal-
ly rippled plasma waveguides with small ripple
depth // Problems of Atomic Science and Technolo-
gy. Series “Plasma Physics”. 2003, № 1, p. 89-91.
9. V.I. Lapshyn, A.F. Stoyanov, I.V. Tkachenko,
V.I. Tkachenko. Fractal Properties of Dispersion
Characteristics of Sinusoidally Rippled Plasma
Waveguide // Problems of Atomic Science and
Technology. Series “Plasma Physics”. 2005, № 1,
p. 137-139.
10. I.G. Maciborko, I.N. Onishenko, Ya.B. Fajnberg, et
al. O vozniknovenii turbulentnosti pri vzaimodejstvii
«monoenergeticheskogo» puchka s plazmoj //
ZhETF. 1972, v. 62, iss. 3(9), p. 874 (in Russian).
11. A.A. Ivanov. Fizika silnoneravnovesnoj plazmy.
M.: “Atomizdat”, 1977, 347 p. (in Russian).
12. A.N. Kondratenko, V.M. Kuklin. Osnovy plazmen-
noj elektroniki. M.: “Energoatomizdat”, 1988, 320 p.
(in Russian)
13. V.I. Tkachenko, P.V. Turbin. Dinamika volnovogo
spektra v puchkovo-plazmennyh sistemah // El-
ektromagnitnye volny i elektronnye sistemy. 2000, v.
5, № 1, p. 24-29 (in Russian).
14. D.A. Andronov, V.I. Tkachenko. Dinamika
volnovyh processov v dissipativnyh puchkovo-
plazmennyh sistemah // Visnik HNU im. V.N.
Karazina, № 529, “Yadra, chastinki, polya. 2001, v.
3/15/, p. 47-49 (in Ukrainian).
15. I.V. Tkachenko, V.I. Tkachenko. Uskorenie zarya-
zhennyh chastic v gofrirovannyh plazmennyh
volnovodah s idealno provodyashimi stenkami //
Tez. dokladov XIV konferenciya po fizike vysokih
energij, yadernoj fizike i uskoritelyam. Kharkiv,
NSC KIPT, 2016, p. 82 (in Russian).
Article received 03.06.2019
ФРАКТАЛЬНЫЙ УСКОРИТЕЛЬ НА ОСНОВЕ ГОФРИРОВАННОГО ПЛАЗМЕННОГО
ВОЛНОВОДА СО СВЕРХПРОВОДЯЩИМИ СТЕНКАМИ
И.В. Ткаченко, В.И. Ткаченко
Предложено использование двухступенчатого механизма ускорения заряженных частиц. Принцип уско-
рения основан на использовании фрактальных свойств волнового спектра гофрированного плазменного
волновода со сверхпроводящими стенками. Первая ступень обеспечивает возбуждение гофрированного
плазменного волновода короткими в направлении движения электронными сгустками (длина сгустка значи-
тельно меньше периода гофра). Вторая ступень осуществляет ускорение пробных заряженных частиц в воз-
бужденном электронными сгустками бесконечном по количеству гармоник электрическом поле. Расчеты
показывают, что при реализации такого механизма ускорения средняя скорость нерелятивистской пробной
частицы может увеличиваться в несколько раз, а длина ее ускорения может составлять расстояние до одного
метра.
ФРАКТАЛЬНИЙ ПРИСКОРЮВАЧ НА ОСНОВІ ГОФРОВАНОГО ПЛАЗМОВОГО
ХВИЛЕВОДУ З НАДПРОВІДНИМИ СТІНКАМИ
І.В. Ткаченко, В.І. Ткаченко
Запропоновано використання двоступеневого механізму прискорення заряджених частинок. Принцип
прискорення заснований на використанні фрактальних властивостей хвильового спектра гофрованого плаз-
мового хвилеводу з надпровідними стінками. Перший ступінь забезпечує збудження гофрованого плазмово-
го хвилеводу короткими в напрямку руху електронними згустками (довжина згустку значно менше періоду
гофра). Другий ступінь здійснює прискорення пробних заряджених частинок у збудженому електронними
згустками нескінченному за кількістю гармонік електричному полі. Розрахунки показують, що при реаліза-
ції такого механізму прискорення середня швидкість нерелятивістської пробної частинки може збільшува-
тися в кілька разів, а довжина її прискорення може становити відстань до одного метра.
|