Separation of electroencephalogram low-frequency components on the basis of the stochastic resonance effect

The paper describes the method for electroencephalogram (EEG) analysis based on the stochastic resonance (SR) effect. The numerical computation has provided the separation of low frequency components that fall within the δ-rhythm band. This is currently central in the neuropathology diagnostics, bec...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Kharchenko, O.I., Lonin, Yu.F., Zabrodina, L.P., Kartashov, V.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/195271
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Separation of electroencephalogram low-frequency components on the basis of the stochastic resonance effect / O.I. Kharchenko, Yu.F. Lonin, L.P. Zabrodina , V.M. Kartashov // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 135-137. — Бібліогр.: ХХ назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The paper describes the method for electroencephalogram (EEG) analysis based on the stochastic resonance (SR) effect. The numerical computation has provided the separation of low frequency components that fall within the δ-rhythm band. This is currently central in the neuropathology diagnostics, because the presence of low frequencies in the EEG is abnormal and bears witness to the disease. For verification, the data obtained with the use of the SR effect have been compared with the computations based on the autocorrelation function (ACF) processing. The comparison has shown their good agreement.