IAP triple-beam facility for simulation studies of radiation damage of materials
The project of ion irradiation facility for in-situ studies of radiation damage being developed in IAP NAS of Ukraine is presented. The platform comprises 300 kV heavy ion implanter, 50 kV collinear dual-beam light ion im-planter and 200 kV electron microscope. The optimal energies of heavy and ligh...
Збережено в:
Дата: | 2022 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2022
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/195390 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | IAP triple-beam facility for simulation studies of radiation damage of materials / V.A. Baturin, S.A. Yeryomin, P.A. Litvinov, S.A. Pustovoitov, O.Yu. Roenko, V.E. Storizhko // Problems of Atomic Science and Technology. — 2022. — № 3. — С. 48-51. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195390 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1953902023-12-05T11:44:25Z IAP triple-beam facility for simulation studies of radiation damage of materials Baturin, V.A. Yeryomin, S.A. Litvinov, P.A. Pustovoitov, S.A. Roenko, O.Yu. Storizhko, V.E. Interaction of relativistic particles with crystals and matter The project of ion irradiation facility for in-situ studies of radiation damage being developed in IAP NAS of Ukraine is presented. The platform comprises 300 kV heavy ion implanter, 50 kV collinear dual-beam light ion im-planter and 200 kV electron microscope. The optimal energies of heavy and light ion beams have been estimated. The results of computer simulation of ion transmission in the light ion implanter are presented. Представлено проект іонно-променевої платформи для in-situ досліджень радіаційних пошкоджень, що розробляється в ІПФ НАН України. Платформа містить у собі імплантер важких іонів на 300 кВ, колінеарний двохпучковий імплантер легких іонів на 50 кВ та електронний мікроскоп на 200 кВ. Оцінено оптимальні енергії пучків важких і легких іонів. Наведено результати комп’ютерного моделювання проходження іонів у імплантері легких іонів. Представлен проект ионно-лучевой платформы для in-situ исследований радиационных повреждений, который разрабатывается в ИПФ НАН Украины. Платформа включает в себя имплантер тяжелых ионов на 300 кВ, коллинеарный двухпучковый имплантер легких ионов на 50 кВ и электронный микроскоп на 200 кВ. Оценены оптимальные энергии пучков тяжелых и легких ионов. Приведены результаты компьютерного моделирования прохождения ионов в имплантере легких ионов. 2022 Article IAP triple-beam facility for simulation studies of radiation damage of materials / V.A. Baturin, S.A. Yeryomin, P.A. Litvinov, S.A. Pustovoitov, O.Yu. Roenko, V.E. Storizhko // Problems of Atomic Science and Technology. — 2022. — № 3. — С. 48-51. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 29.25.Ni, 61.80.Jh http://dspace.nbuv.gov.ua/handle/123456789/195390 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Interaction of relativistic particles with crystals and matter Interaction of relativistic particles with crystals and matter |
spellingShingle |
Interaction of relativistic particles with crystals and matter Interaction of relativistic particles with crystals and matter Baturin, V.A. Yeryomin, S.A. Litvinov, P.A. Pustovoitov, S.A. Roenko, O.Yu. Storizhko, V.E. IAP triple-beam facility for simulation studies of radiation damage of materials Вопросы атомной науки и техники |
description |
The project of ion irradiation facility for in-situ studies of radiation damage being developed in IAP NAS of Ukraine is presented. The platform comprises 300 kV heavy ion implanter, 50 kV collinear dual-beam light ion im-planter and 200 kV electron microscope. The optimal energies of heavy and light ion beams have been estimated. The results of computer simulation of ion transmission in the light ion implanter are presented. |
format |
Article |
author |
Baturin, V.A. Yeryomin, S.A. Litvinov, P.A. Pustovoitov, S.A. Roenko, O.Yu. Storizhko, V.E. |
author_facet |
Baturin, V.A. Yeryomin, S.A. Litvinov, P.A. Pustovoitov, S.A. Roenko, O.Yu. Storizhko, V.E. |
author_sort |
Baturin, V.A. |
title |
IAP triple-beam facility for simulation studies of radiation damage of materials |
title_short |
IAP triple-beam facility for simulation studies of radiation damage of materials |
title_full |
IAP triple-beam facility for simulation studies of radiation damage of materials |
title_fullStr |
IAP triple-beam facility for simulation studies of radiation damage of materials |
title_full_unstemmed |
IAP triple-beam facility for simulation studies of radiation damage of materials |
title_sort |
iap triple-beam facility for simulation studies of radiation damage of materials |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2022 |
topic_facet |
Interaction of relativistic particles with crystals and matter |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195390 |
citation_txt |
IAP triple-beam facility for simulation studies of radiation damage of materials / V.A. Baturin, S.A. Yeryomin, P.A. Litvinov, S.A. Pustovoitov, O.Yu. Roenko, V.E. Storizhko // Problems of Atomic Science and Technology. — 2022. — № 3. — С. 48-51. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT baturinva iaptriplebeamfacilityforsimulationstudiesofradiationdamageofmaterials AT yeryominsa iaptriplebeamfacilityforsimulationstudiesofradiationdamageofmaterials AT litvinovpa iaptriplebeamfacilityforsimulationstudiesofradiationdamageofmaterials AT pustovoitovsa iaptriplebeamfacilityforsimulationstudiesofradiationdamageofmaterials AT roenkooyu iaptriplebeamfacilityforsimulationstudiesofradiationdamageofmaterials AT storizhkove iaptriplebeamfacilityforsimulationstudiesofradiationdamageofmaterials |
first_indexed |
2025-07-16T23:23:49Z |
last_indexed |
2025-07-16T23:23:49Z |
_version_ |
1837847784703655936 |
fulltext |
48 ISSN 1562-6016. ВАНТ. 2022. №3(139)
https://doi.org/10.46813/2022-139-048
IAP TRIPLE-BEAM FACILITY FOR SIMULATION STUDIES
OF RADIATION DAMAGE OF MATERIALS
V.A. Baturin, S.A. Yeryomin, P.A. Litvinov, S.A. Pustovoitov, O.Yu. Roenko,
V.E. Storizhko
Institute of Applied Physics NAS of Ukraine, Sumy, Ukraine
E-mail: baturin49@gmail.com
The project of ion irradiation facility for in-situ studies of radiation damage being developed in IAP NAS of
Ukraine is presented. The platform comprises 300 kV heavy ion implanter, 50 kV collinear dual-beam light ion im-
planter and 200 kV electron microscope. The optimal energies of heavy and light ion beams have been estimated.
The results of computer simulation of ion transmission in the light ion implanter are presented.
PACS: 29.25.Ni, 61.80.Jh
INTRODUCTION
One of the consequences of the interaction of high-
energy particles (photons, neutrons, ions or electrons)
with crystalline materials is the formation of lattice de-
fects resulting from the energy transfer from an incident
projectile to target atoms and subsequent displacement
of target atoms. The result of a radiation damage event
is the creation of a collection of point defects (vacancies
and interstitials) and clusters of these defects in the
crystal lattice [1].
The development of nuclear reactor technology re-
quires new studies of reactor material resistability under
neutron bombardment. Radiation‐induced microstruc-
tural changes significantly degrade materials’ properties
(increase in electrical resistivity, decrease in thermal
conductivity, radiation hardening and embrittlement,
irradiation creep, void swelling, reduction in fatigue
performance, etc.). The interaction of high-energy neu-
trons with target atoms also causes the formation of
foreign atoms as a result of nuclear transmutation reac-
tions. Transmutation is a process that is very sensitive to
the neutron spectrum [2]. The most important products
of nuclear transmutation reactions are helium and hy-
drogen atoms. These atoms modify the process of evo-
lution of the initially formed radiation microstructure,
which leads to a change in the macroscopic properties
of the irradiated material.
The traditional way to study the irradiation effect is
to irradiate candidate nuclear reactor material in nuclear
reactor. Radiation damage has been studied using vari-
ous irradiation sources, such as fission neutrons (fast
and mixed‐spectrum fission reactors), fusion neutrons
in a D‐T fusion neutron source, spallation neutron
sources, ion irradiation with accelerators, high‐energy
electron beams, etc [3].
Neutron irradiation experiments are not easy to con-
duct for a number of reasons. Investigations of damage
processes in materials require a wide range of precise
and well controlled experimental conditions, which are
not possible to tune precisely in neutron irradiation ex-
periments. Due to a low dose rate, typical neutron irra-
diation experiments in test reactors require 1 to 3 years
of exposure to reach appreciable fluence levels. Special
precautions are required to handle the radioactive sam-
ples during the further analysis which may again take
years. Heavy ion irradiation provides an alternate to
neutron irradiation which has considerable advantages
in contrast to neutron irradiation, such as: higher radia-
tion damage rates (~10
-2
dpa/s) compared to nuclear
reactors (~10
-7
dpa/s), little or no residual radioactivity,
precise control of irradiation conditions, a lower irradia-
tion cost than neutron irradiation.
Thus, heavy ion beam simulation irradiation of
structural materials is used worldwide as a valuable
technique of studying of their radiation stability under
nuclear reactor irradiation. Heavy ion accelerator linked
with transmission electron microscope (TEM) allows in-
situ observation of micro-structural and micro-chemical
evolution of irradiated materials. In recent years more
then a dozen ion irradiation facilities have been devel-
oped over the world [4]. Most of them are triple-beam
facilities not coupled with TEM or dual-beam linked
TEM facilities. Recently it was shown that synergistic
effects of heavy ion irradiation of iron target along with
simultaneous He and H implantation play important role
in defect evolution [5]. So in order to conduct more ac-
curate and detailed simulation of neutron irradiation
effects it is highly desirable to have a triple ion beam
facility with an option of in-situ observation of radiation
induced changes on a nanoscale by means of TEM. One
of the first facilities of this type was recently put into
operation in China [6, 7].
The Institute of Applied Physics of the NAS of
Ukraine is developing a project of a triple-beam ion
irradiation facility composed of a high voltage heavy
ion implanter and a low voltage light ion dual-beam
implanter linked with TEM.
1. GENERAL PRINCIPLES AND DESIGN
OF IAP TRIPLE BEAM FACILITY
TEM studies of radiation damage are usually carried
out in a near-surface layer with a thickness of about
1000 Å. Heavy ion beams are used to produce defects.
Since the implanted ions distort the stoichiometric com-
position of the sample under ion irradiation, it is desira-
ble that the ratio of the concentration of ion induced
defects to the concentration of implanted atoms be max-
imum within a given layer. This can be achieved in the
range of heavy ion beam energies from 1 MeV and
above (Fig. 1).
http://29.25.ni/
ISSN 1562-6016. ВАНТ. 2022. №3(139) 49
Fig. 1. Normalized depth distribution of implanted ions and ion beam induced vacancies upon irradiation of an iron
sample with Ar
+
ions with energies: 100 keV (a); 1 MeV (b) (simulation using SRIM software [8])
It is possible to obtain high ion energies with rela-
tively small overall dimensions of the heavy ion im-
planter by using sources of multiply charged ions. The
most suitable are ion sources using electron cyclotron
resonance (ECR). Ar
+4
ion beam, for example, generat-
ed by ECR ion source has 1.2 MeV energy on 300 kV
ion accelerator.
Hydrogen and helium ion beam used for simulation
of transmutation processes produce much less defects
because of their low atomic mass. The maximum of
implanted ions distribution for H
+
and He
+
should be
within the abovementioned range of 1000 Å. According
to SRIM simulation for iron target this condition is ful-
filled in the range of H
+
ions up to 15 keV, and up to
30 keV for He
+
ions. Thus, the maximum voltage of
light ion implanter may be limited to 50 kV.
The proposed design of a triple beam facility is pre-
sented on Fig. 2. The facility consists of a 300 kV heavy
ion implanter from National Electrostatics Corporation
(NEC), a 50 kV hydrogen-helium coaxial ion implanter
developed at the Institute of Applied Physics of the Na-
tional Academy of Sciences of Ukraine and a commer-
cial 200 kV TEM (model FEI Talos F200i). The angle
between the ion beam lines and the TEM optical axis is
68
0
, and the angle between heavy and light ion beam
lines is 45
0
.
Fig. 2. Layout of IAP triple-beam facility
The Pantechnik’s Nanogan 10 GHz 100 W ECR ion
source is used as a heavy ion generator in the high-
voltage accelerator. This model has good performance
and long duty circle and is capable of producing 140 μA
of Ar
+4
ions and 20 μA of Ar
+8
ions [9]. The source has
an oven system for generating metallic ions. The NEC
high-voltage deck also contains turbo-molecular pump
station backed by an oil-free scroll pump, preac-
celeration extractor gap lens system, 90
0
analysis mag-
net system with a resolution greater than 200, all-metal
and ceramic accelerating tube assembly, computer con-
trol system with digital light-link telemetry system, post
accelerator electrostatic quadrupole triplet lens, and
switching magnet with output of 0
0
and 22
0
. The 0
0
out-
put goes to the target chamber for ex-situ irradiation
experiments, and the 22
0
one is linked with TEM via ion
beam line containing devices for heavy ion beam ma-
nipulating and diagnostics. All deck power is provided
by two motor generator sets. The deck is biased by a
highly regulated 300 kV power supply. As with the
source bias, extractor and lens power supplies, the deck
bias supply is a high-frequency voltage multiplier type
with low ripple. Ion source, lens, and magnet power
supplies are controlled by two separate computer inter-
a b
50 ISSN 1562-6016. ВАНТ. 2022. №3(139)
faced controllers, one at source potential and on at deck
potential. Optical fibers connect these controllers to PC.
Light and heavy ion beamlines are linked to TEM
with bellows, which prevent TEM resolution reducing
affected by mechanical vibration of implanters. At the
end of the ion channels there are collimators with an
aperture diameter of 2 mm, which determine the posi-
tion and size of the ion spot on the sample surface inside
the TEM. These apertures also separate the region of
relatively high residual gas pressure inside the
beamlines (~5∙10
-4
Pa) from that inside TEM (~10
-4
Pa).
2. HYDROGEN-HELIUM COAXIAL ION
IMPLANTER
The main difficulty in designing a light ion implant-
er is obtaining an ion beam consisting of two types of
ions, hydrogen and helium, which simultaneously bom-
bard the target surface. The beam must also be cleaned
of impurities of heavy ions. The triple-beam facility at
Xiamen University [6] has one light ion source using
gas mixture of hydrogen and helium. The hydrogen mo-
lecular ion H2
+
instead of H
+
is selected for this implant-
er to fulfill the requirement of the same projectile range
of helium and hydrogen ions. A symmetrical achromatic
system including two identical Wien filters and an
Einzel lens was designed for the coaxial transport of H2
+
and He
+
beams and filtering out of impurities. The ini-
tial beam from the ion source is separated to several
beams by using the first Wien filter. Then, H2
+
and He
+
beams are selected by a dual-aperture slit. The two sepa-
rated ion beams are then focused and recombined to the
beamline axis by using the second Wien filter.
A different r approach to the generation and for-
mation of a coaxial beam of helium and hydrogen ions
is used in the project of the IAP three-beam setup pre-
sented here (Fig. 3). Two separate ion sources are used
for generating light ions: one for H
+
ions and one for
He
+
ions.
Fig. 3. The layout of IAP hydrogen-helium coaxial ion implanter: 1 – He
+
ion source; 2 – H
+
ion source;
3 – ion optics; 4 – vacuum chamber; 5 – electromagnet; 6 – focusing voltage source; 7 – ion source power supply;
8, 9 – extraction voltage source; 10,a,b – isolation transformers; 11 – gas system; 12 – command and control
system; 13 – 50 kV power supply; 14 – vacuum turbo pump; 15 – acceleration tube; 16 – slits; 17 – einzel lens;
18 – Faraday cup; 19 – beam steerer; 20 – ion pump; 21 – profile monitor
Convergence of two beams into one and simultane-
ous mass separation of the beams is carried out in an
electromagnet. The ion sources are mounted to the elec-
tromagnet at different angles corresponding to different
radii of curvature of ion trajectories. The smaller radius
of curvature corresponds to the source of hydrogen ions.
Convergence of beams is carried out by adjusting the
accelerating voltages for each of the ion sources at a
given value of the magnetic field of the electromagnet.
Convergence and transport of two ion beams was
simulated using the SIMION code (Fig. 4). The initial
beam emittance is set to 20 mm∙mrad. The energies of
H
+
and He
+
ions at the exit of the ion sources are 7 and
15 keV respectively, and the magnitude of the magnetic
field of the electromagnet is 55 mT.
Fig. 4. The simulation of H
+
(blue) and He
+
(red) ion trajectories in the collinear dual-beam implanter
After post-acceleration in the accelerating tube with
a potential drop of 10 kV hydrogen and helium ions
gain energies of 17 and 25 keV respectively, which cor-
responds to an average ion penetration depth in an iron
ISSN 1562-6016. ВАНТ. 2022. №3(139) 51
target of about 1000 Å. The magnetic field of the elec-
tromagnet has a stronger focusing effect on the ion
beam with a smaller radius of curvature of the trajecto-
ries. In our case, this leads to a stronger focusing of the
hydrogen ion beam. An einzel lens placed after the ac-
celerating tube makes it possible to equalize the profiles
of two beams at the TEM entrance. The collinear beam
diameter near the TEM entrance is about 8 mm.
The Pantechnik’s Monogan-M100 2.45 GHz
30…100 W ECR ion sources capable of producing up to
1mA of H
+
and He
+
ions are used in the implanter. The
maximum accelerating voltage of the ion source is
30 kV.
This configuration of H
+
and He
+
ion sources allows
to obtain a coaxial ion beam in the receiving chamber of
the TEM and change their energy independently.
This design of the hydrogen-helium coaxial ion im-
planter, in contrast to the setup of Xiamen University,
makes it possible to: irradiate the target separately with
hydrogen or helium beams; change the currents of H
+
and He
+
ions over a wide range; change the energy of
the ions.
3. MAIN PARAMETERS OF IAP TRIPLE
BEAM FACILITY
1. The developed installation will allow receive
beams of heavy ions of various metals and gases with
charge in the range 1…8.
2. In simulation experiments, the energy of heavy.
ions varies within 0.3…2.4 MeV, and helium and
hydrogen ions - 0.1…50 keV.
3. Current density of the heavy ion beam
j = 1…50 μA/cm
2
.
4. Current density of ion beams of gases He
+
and H
+
j = 1…1000 nA/cm
2
.
5. Defect generation rate range k = 10
-5
…10
-2
dpa/s.
6. The temperature of the samples during irradiation
can maintained in the range T = 80…600°С.
7. Radiation dose up to 300…500 dpa.
The use of the developed setup for the study of radi-
ation damage on ion beams satisfies the requirements of
ASTM E521-83 "Standard Practice for Modeling Neu-
tron Damage Using Charged Particle Irradiation" [10].
REFERENCES
1. G.S. Was. Fundamentals of radiation materials sci-
ence: Metals and Alloys. New York: Springer, 2017,
1002 p.
2. V.N. Voyevodin. Structural materials of nuclear pow-
er – challenge to 21 century // Problems of Atomic
Science and Technology. 2007, № 2, p. 10-22.
3. R.L. Klueh, D.R. Harris. High-Chromium Ferritic
and Martensitic Steels for Nuclear Applications
(ASTM, Conshohocken, 2001), Google Scholar.
4. Report on the workshop for science application of a
triple beam capability for advanced nuclear energy
material, Lawrence Livermore National Laboratory,
April 6-7, 2009.
5. T. Tanaka, K. Oka, S. Ohnuki, S. Yamashita, et al.
Synergistic effect of helium and hydrogen for defect
evolution under multi-ion irradiation of Fe-Cr
ferritic alloys // J. Nucl. Mater. 2004, v. 329-333,
Part A, p. 294-298.
6. Bing Tang, Jian Zhang, Ruigang Ma, Yingjun Ma. A
triple beam in-situ facility at Xiamen University //
Materials Transactions. 2014, v. 55, № 3, p. 410-412.
7. Bing Tang, Baoqun Cui, Lumin Wang, Ruigang Ma,
et al. The development of a hydrogen-helium dual-
beam ion implanter // Rev. Sci. Instrum. 2020, v. 91,
№ 1, p. 013309.
8. http://srim.org
9. http://www.pantechnik.com/wp-
content/uploads/2020/07/Nanogan.pdf
10. Standard Practice for Neutron Radiation Damage
Simulation by Charged-Particle Irradiation (Desig-
nation E 521-96) // Annual Book of ASTM Standards
v. 12.02. Philadelphia, PA, USA, 2004, p. 141-160,
American Society for Testing and Materials.
Article received 4.06.2022
ТРЬОХПУЧКОВА ПЛАТФОРМА ІПФ ДЛЯ ІМІТАЦІЙНИХ ДОСЛІДЖЕНЬ
РАДІАЦІЙНОГО ПОШКОДЖЕННЯ МАТЕРІАЛІВ
В.А. Батурін, С.О. Єрьомін, П.О. Літвінов, С.О. Пустовойтов, О.Ю. Роєнко, В.Ю. Сторіжко
Представлено проект іонно-променевої платформи для in-situ досліджень радіаційних пошкоджень, що
розробляється в ІПФ НАН України. Платформа містить у собі імплантер важких іонів на 300 кВ,
колінеарний двохпучковий імплантер легких іонів на 50 кВ та електронний мікроскоп на 200 кВ. Оцінено
оптимальні енергії пучків важких і легких іонів. Наведено результати комп'ютерного моделювання
проходження іонів у імплантері легких іонів.
ТРЕХПУЧКОВАЯ ПЛАТФОРМА ИПФ ДЛЯ ИМИТАЦИОННЫХ ИССЛЕДОВАНИЙ
РАДИАЦИОННОГО ПОВРЕЖДЕНИЯ МАТЕРИАЛОВ
В.А. Батурин, С.А. Еремин, П.А. Литвинов, С.А. Пустовойтов, О.Ю. Роенко, В.Е. Сторижко
Представлен проект ионно-лучевой платформы для in-situ исследований радиационных повреждений,
который разрабатывается в ИПФ НАН Украины. Платформа включает в себя имплантер тяжелых ионов на
300 кВ, коллинеарный двухпучковый имплантер легких ионов на 50 кВ и электронный микроскоп на 200 кВ.
Оценены оптимальные энергии пучков тяжелых и легких ионов. Приведены результаты компьютерного мо-
делирования прохождения ионов в имплантере легких ионов.
http://srim.org/
http://www.pantechnik.com/wp-content/uploads/2020/07/Nanogan.pdf
http://www.pantechnik.com/wp-content/uploads/2020/07/Nanogan.pdf
|