Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field

The spatial redistribution of the ²³⁵U isotope of natural uranium in a gradient temperature field along the height of the reactor in supercritical carbon dioxide has been experimentally investigated. The scheme of the reactor is given and the principle of operation of the reactor is described. The m...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Borts, B.V., Skoromnaya, S.F., Kazarinov, Yu.G., Neklyudov, I.M., Tkachenko, V.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/195443
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field / B.V. Borts, S.F. Skoromnaya, Yu.G. Kazarinov, I.M. Neklyudov, V.I. Tkachenko // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 98-103. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195443
record_format dspace
spelling irk-123456789-1954432023-12-05T12:33:49Z Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field Borts, B.V. Skoromnaya, S.F. Kazarinov, Yu.G. Neklyudov, I.M. Tkachenko, V.I. Thermal and fast reactor materials The spatial redistribution of the ²³⁵U isotope of natural uranium in a gradient temperature field along the height of the reactor in supercritical carbon dioxide has been experimentally investigated. The scheme of the reactor is given and the principle of operation of the reactor is described. The method of preparation of initial samples from granite samples containing natural uranium and the procedure of extraction are described. The conclusion about the spatial redistribution of ²³⁵U isotopes in supercritical carbon dioxide is based on the analysis of gamma spectra of extracts. It is shown that the concentration of the ²³⁵U isotope in a supercritical fluid is maximal near the lower heated flange of the reactor, and decreases with approaching the upper, cooled flange. It was concluded that the separation factor of the ²³⁵U isotope in supercritical carbon dioxide can be about 1.2 ± 0.12. Експериментально досліджено просторовий перерозподіл ізотопу ²³⁵U природного урану в градієнтному полі температури по висоті реактора в надкритичному діоксиді вуглецю. Наведено схему і описаний принцип роботи реактора. Описані метод підготовки вихідних зразків із зразків гранітів, що містять природний уран, і порядок проведення екстракції. Висновок про просторовий перерозподілі ізотопів ²³⁵U в надкритичному діоксиді вуглецю заснований на аналізі гамма-спектрів екстрактів. Показано, що в надкритичному флюїді концентрація ізотопу ²³⁵U максимальна поблизу нижнього фланця реактора, що підігрівається, і зменшується з наближенням до верхнього охолоджуваного фланця. Зроблено висновок про те, що коефіцієнт поділу ізотопу ²³⁵U в надкритичному діоксиді вуглецю може становити величину близько 1.2 ± 0.12. Экспериментально исследовано пространственное перераспределение изотопа ²³⁵U природного урана в градиентном поле температуры по высоте реактора в сверхкритическом диоксиде углерода. Приведена схема и описан принцип работы реактора. Описаны метод подготовки исходных образцов из образцов гранитов, содержащих природный уран, и порядок проведения экстракции. Вывод о пространственном перераспределении изотопов ²³⁵U в сверхкритическом диоксиде углерода основан на анализе гамма-спектров экстрактов. Показано, что в сверхкритическом флюиде концентрация изотопа ²³⁵U максимальна вблизи нижнего подогреваемого фланца реактора, и уменьшается с приближением к верхнему, охлаждаемому фланцу. Сделан вывод о том, что коэффициент разделения изотопа ²³⁵U в сверхкритическом диоксиде углерода может составлять величину около 1.2 ± 0.12. 2021 Article Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field / B.V. Borts, S.F. Skoromnaya, Yu.G. Kazarinov, I.M. Neklyudov, V.I. Tkachenko // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 98-103. — Бібліогр.: 24 назв. — англ. 1562-6016 https://doi.org/10.46813/2021-135-098 http://dspace.nbuv.gov.ua/handle/123456789/195443 542.61 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Thermal and fast reactor materials
Thermal and fast reactor materials
spellingShingle Thermal and fast reactor materials
Thermal and fast reactor materials
Borts, B.V.
Skoromnaya, S.F.
Kazarinov, Yu.G.
Neklyudov, I.M.
Tkachenko, V.I.
Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field
Вопросы атомной науки и техники
description The spatial redistribution of the ²³⁵U isotope of natural uranium in a gradient temperature field along the height of the reactor in supercritical carbon dioxide has been experimentally investigated. The scheme of the reactor is given and the principle of operation of the reactor is described. The method of preparation of initial samples from granite samples containing natural uranium and the procedure of extraction are described. The conclusion about the spatial redistribution of ²³⁵U isotopes in supercritical carbon dioxide is based on the analysis of gamma spectra of extracts. It is shown that the concentration of the ²³⁵U isotope in a supercritical fluid is maximal near the lower heated flange of the reactor, and decreases with approaching the upper, cooled flange. It was concluded that the separation factor of the ²³⁵U isotope in supercritical carbon dioxide can be about 1.2 ± 0.12.
format Article
author Borts, B.V.
Skoromnaya, S.F.
Kazarinov, Yu.G.
Neklyudov, I.M.
Tkachenko, V.I.
author_facet Borts, B.V.
Skoromnaya, S.F.
Kazarinov, Yu.G.
Neklyudov, I.M.
Tkachenko, V.I.
author_sort Borts, B.V.
title Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field
title_short Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field
title_full Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field
title_fullStr Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field
title_full_unstemmed Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field
title_sort spatial nonuniform distribution of ²³⁵u isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2021
topic_facet Thermal and fast reactor materials
url http://dspace.nbuv.gov.ua/handle/123456789/195443
citation_txt Spatial nonuniform distribution of ²³⁵U isotope at supercritical fluid extraction with carbon dioxide in a gradient temperature field / B.V. Borts, S.F. Skoromnaya, Yu.G. Kazarinov, I.M. Neklyudov, V.I. Tkachenko // Problems of Atomic Science and Technology. — 2021. — № 5. — С. 98-103. — Бібліогр.: 24 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bortsbv spatialnonuniformdistributionof235uisotopeatsupercriticalfluidextractionwithcarbondioxideinagradienttemperaturefield
AT skoromnayasf spatialnonuniformdistributionof235uisotopeatsupercriticalfluidextractionwithcarbondioxideinagradienttemperaturefield
AT kazarinovyug spatialnonuniformdistributionof235uisotopeatsupercriticalfluidextractionwithcarbondioxideinagradienttemperaturefield
AT neklyudovim spatialnonuniformdistributionof235uisotopeatsupercriticalfluidextractionwithcarbondioxideinagradienttemperaturefield
AT tkachenkovi spatialnonuniformdistributionof235uisotopeatsupercriticalfluidextractionwithcarbondioxideinagradienttemperaturefield
first_indexed 2025-07-16T23:26:43Z
last_indexed 2025-07-16T23:26:43Z
_version_ 1837847967850037248
fulltext ISSN 1562-6016. PASТ. 2021. №5(135), p. 98-103. https://doi.org/10.46813/2021-135-098 UDC 542.61 SPATIAL NONUNIFORM DISTRIBUTION OF 235 U ISOTOPE AT SUPERCRITICAL FLUID EXTRACTION WITH CARBON DIOXIDE IN A GRADIENT TEMPERATURE FIELD B.V. Borts 1 , S.F. Skoromnaya 1 , Yu. G. Kazarinov 1,2 , I.M. Neklyudov 1,2 , V.I. Tkachenko 1,2,3 1 NSC “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; 2 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine 3 E-mail: tkachenko@kipt.kharkov.ua The spatial redistribution of the 235 U isotope of natural uranium in a gradient temperature field along the height of the reactor in supercritical carbon dioxide has been experimentally investigated. The scheme of the reactor is given and the principle of operation of the reactor is described. The method of preparation of initial samples from granite samples containing natural uranium and the procedure of extraction are described. The conclusion about the spatial redistribution of 235 U isotopes in supercritical carbon dioxide is based on the analysis of gamma spectra of extracts. It is shown that the concentration of the 235 U isotope in a supercritical fluid is maximal near the lower heated flange of the reactor, and decreases with approaching the upper, cooled flange. It was concluded that the separation factor of the 235 U isotope in supercritical carbon dioxide can be about 1.2 ± 0.12. ENERGY URANIUM ISOTOPE. METHODS FOR URANIUM EXTRACTION FROM NUCLEAR MATERIALS The main fuel isotope in open-cycle uranium-fueled thermal reactors is 235 U. Since the world nuclear energy uses this uranium isotope, then, naturally, its production and depletion rate in the world are growing [1]. Generation of 235 U isotope is based on its separation from the bulk of natural uranium, which mainly consists of 238 U isotope in an approximate ratio 99.2745% 238 U:0.7200% 235 U [2]. Production of uranium compounds for the needs of nuclear power is carried out by direct mining and refining of uranium from uranium deposits [1, 3], as well as by spent nuclear fuel reprocessing (SNF) using well- developed methods (bismuth-phosphate process, liquid extraction in the form of redox and purex processes) [4–9]. The disadvantage of uranium production by processing of uranium ores is its incomplete (up to 95…97%) extraction from the feedstock. Therefore, a large amount of waste uranium has accumulated in Ukraine in the form of tailing dumps, which form technogenic deposits of a total area of about 2.5 mln m 2 and a mass of about 40 mln t. Waste heaps of coal mines of a total volume of coal rocks of the order of 1056.52 mln m 3 can be also counted as technogenic deposits containing heavy metals, uranium and thorium. Therefore, search for new alternative, low-waste technologies for processing technogenic deposits should be considered as one of the most important tasks in the development of nuclear energy. One of these technologies satisfied the selective, deep and low-waste processing of feedstock is the physical method of supercritical fluid extraction by carbon dioxide (SFE-CO2) [10] of uranyl nitrate complexes with organophosphorus compounds. According to this method a supercritical fluid with an uranium complex dissolved in it is generated in a reactor at a high pressure (more than 7.38 MPa) and a relatively low temperature (more than 31.06 ºС). Experiments proved that up to 62% of uranium complexes are extracted at a pressure of 9 MPa and a temperature of 38 ºС [11]. Relatively low indicators of extraction efficiency in [11] were obtained at low pressures, low temperatures and using tributyl phosphate (TBP) as an organophosphorus reagent. The use of higher pressures (up to 30 MPa) and additional complexing agents make it possible to increase the extraction efficiency up to 100% [12]. A theoretical estimate has shown that the maximum extraction efficiency of the uranium complex is about 96% [13]. Since, uranium complexes are in the volume of the fluid in the process of SFE-CO2, there is a certain possibility to carry out local changes in the ratio of the amount of isotopes by the effect of some external factors. An example is the Rank-Hilsch vortex tubes [14] used to separate 36 Ar/ 40 Ar isotopes in the fossil gases Н2 or СF3Сl, which can be considered as an external factor. In the case of SFE-CO2 for uranium complexes a change in the ratio of the amount of isotopes can be implemented in the process of fluid extraction from the reaction volume on condition that the flow and temperature scenarios similar to the Zippe centrifuge are realized. In the case of SFE-CO2 the supercritical fluid containing uranium complexes is under high pressure. Such a medium is quite sensitive to the temperature differential at its boundaries: even small temperature gradients (at the level of 0.1…0.2 С/cm) can start the convective mechanism of mass transfer, which has been experimentally confirmed in [15]. Therefore, it is of great interest to study the effect of the temperature gradient on the spatial distribution of a supercritical fluid containing complexes of uranium isotopes, which may arise even due to a small temperature difference in the probabilities of their transitions between energy levels [13]. As one of the examples of the possible redistribution of uranium isotopes under natural conditions, in our mailto:tkachenko@kipt.kharkov.ua opinion, is a natural nuclear reactor that operated for more than tens of thousands of years about two billion years ago in Gabon, West Africa [16]. To initiate chain fission reaction in such a natural reactor it is necessary to have 235 U enrichment at least 3%, as it is provided in modern commercial nuclear reactors. For example, light water reactors operate at pressures of about 15.0 MPa and temperatures of about 300 ºС [17]. At such parameters the water is in a liquid state (Tsc = 374 ºC, Psc = 21.77 MPa) and carbon dioxide, as noted above, goes into a supercritical state and turns into a good organic solvent [10, 11]. Under such conditions, at low water content, when there is no moderator and fission reactions cease, the dissolution of uranium complexes in supercritical carbon dioxide is possible. The aforementioned uranium enrichment to a level of 3% can be observed in the field of a spatial temperature gradient due to the temperature difference in probabilities of transitions of uranium isotope complexes between energy levels [13]. This paper presents the results of an experimental study of the change in the spatial distribution of 235 U isotope in a volume of supercritical carbon dioxide heated from below and cooled from above. DESCRIPTION OF THE TRIAL SETUP REACTOR Experiments for investigation of spatial distribution of uranium isotopes 235 U and 238 U in the reactor were carried out on the upgraded laboratory setup for supercritical fluid extraction “SFE-U” [11, 18]. The setup allows raising the pressure of supercritical carbon dioxide up to 20.0 MPa and maintaining the temperature from room temperature to 50 ºC. Control of pressure and temperature at different points of the reactor is provided by digital barostats and thermostats, which allow such control in automatic, semi-automatic and manual modes. When carrying out the extractions, Carbon dioxide meeting the requirements of GOST 8050-85 with a volumetric CO2 content of 99.8% was used for extractions. The updating of the laboratory setup was carried out only for the reactor, which in its original form was a cylinder 9 cm high and 2.6 cm in diameter. In the upgraded reactor its height was increased to 21.8 cm. Its lower and upper flanges were maintained at specified temperatures by means of adjustable heaters and the temperature of the lower flange was set higher than the temperature of the upper one. The internal arrangement of the upgraded reactor is presented in Fig 1. A specific feature of this upgraded reactor is a sealed axial mounting of a stainless steel tube of a diameter of 6.1 mm and a wall thickness of 1 mm. At the end of the tube there is a intake device 10 (see the fragment of section A in Fig. 1) in the form of an umbrella, which doses removing a part of the extract from the volume of the reactor by lowering the pressure in it. Decreasing the pressure is carried out stepwise, starting from the initial pressure release by about 4.0 MPa and subsequent pressure release in total by an amount within the range of 9.6…10.0 MPa from the initial one. As shown in [11], the bulk of the uranium complex containing 235 U isotope is recovered during the first pressure release. The fraction of the primary recovered extract volume was estimated by the same ratio as the primary pressure release, 0.25 of the total volume, and basically corresponded to the area located below the intake device. Fig. 1. Internal arrangement of the elements of the upgraded reactor: 1 – bolt; 2 – middle flange; 3 – fitting; 4 – sealer; 5 – case; 6 – insert; 7 – bottom flange; 8 – bolt; 9 – tube; 10 – intake device; 11 – lower flange temperature sensor; 12 – lower flange heating element; 13 – upper flange temperature sensor; 14 – upper flange heating element The intake device was located at a given distance from the lower flange of the reactor in each series of experiments. SAMPLE PREPARATION Sample preparation is necessary to impart to the initial samples the properties of solubility in supercritical carbon dioxide. Sample preparation was carried out similarly to that described in [19], where samples of granites with uranium content from 0.13 to 667 µg/g were used as the initial material containing natural uranium. The uranium content in the initial samples was determined by gamma spectrometry using SEG-50 (P) spectrometer based on a semiconductor germanium- lithium diffusion-drift detector DGDK-60V. A granite sample with the highest natural uranium content was used for the experiments. The original sample was crushed and grinded to powder of a grain size of less than 50 μm. Then 10 g of powder was poured with 20 ml of 40% nitric acid and kept for a day. The resulting solution was filtered. After filtration the solution was mixed with 6 ml of 30% TBP solution in kerosene and was shaken. After stratification the organic phase was filtered through a paper filter. Thus, under the assumption that the efficiency of all sample preparation procedures is close to 100%, the uranium content in 1 ml of solution was estimated to be no more than 1.1 mg. EXTRACTION PROCEDURE The extraction on the upgraded SFE-U unit was carried out in the following order: – a glass container (short test tube) containing 2 ml of the obtained organic extract was placed in the reactor; – the upper flange of the reactor was heated up to 35 ºС, the lower flange – up to 40 ºС; – injection of carbon dioxide by means of a compressor up to a pressure of 16.0 MPa; – exposition of the extract for 30 min; – discharge of the extract (~ 1 ml) into a glass jar for 5 min while releasing pressure from 16 to 12 MPa; – discharge of the extract (~ 1 ml) into a glass beaker for 5 min while releasing pressure from 12 to 6 MPa; – after releasing the pressure to atmospheric, the extract residue was removed from the reactor. The extraction procedures described above were carried out three times at three different points along the height of the reactor: I, II, and III. At point I the distance from the lower flange of the reactor to the intake device (see item 10 in Fig. 1) was – 5 cm; at point II – 10 cm; at point III – 15 cm. PROCESSING OF THE OBTAINED EXPERIMENTAL RESULTS The initial samples of the solution (before CFE-СО2 carrying out) and the samples obtained as a result of CFE-СО2 were analyzed for the content of uranium 235 U isotope according to the spectra obtained on the gamma- ray detector. A detector based on high-purity germanium was used as a gamma-ray detector – a coaxial germanium detector GC 1818 (Germanium Coaxial) with a relative detection efficiency отн = 18%, an energy resolution Е = 180 keV at an energy of gamma quanta Е = 1.33 MeV. Table 1 The results of the analysis of 235 U isotope content in natural uranium using the FRAM program Sample No. (Volume) Content 235 U, % Error; +/-, % 0 (2 ml) initial 0.69 0.012; (1.75) 0 (6 ml) initial 0.64 0.007; (1.03) I.1 (2 ml) 0.91 0.018; (1.95) I.2 (2 ml) 1.35 0.101; (7.5) I.3 (2 ml) 1.4 0.062; (4.44) II.1 (2 ml) 1.57 0.352; (2.44) II.2 (2 ml) 1.00 0.056; (5.62) II.3 (2 ml) 1.07 0.055; (5.17) III.1 (2 ml) 0.98 0.061; (6.19) III.2 (2 ml) 0.97 0.030; (3.16) III.3 (2 ml) 0.96 0.063; (6.27) The residue (2 ml) in point III 0.63 0.017; (2.70) When using the detector, gamma spectra were measured with their subsequent analysis by the FRAM program [20] which was developed at the Los Alamos National Laboratory. The sample was placed directly in front of the detector window. The standard exposure time was about 2 days. A special feature of the FRAM software is that results are obtained using only spectral data and known nuclear constants. In this case, calibration of the spectrometric system using standard samples is not required. The results of the analysis of 235 U isotope content in natural uranium using the FRAM program are presented in Table1. RESULTS AND DISCUSSION Based on the results presented in Table 1 the following conclusions can be drawn. The content of the uranium isotope 235 U in the initial samples does not exceed the values corresponding to natural uranium – 0.711…0.7200% [2]. As a result of SFE-CO2 complexes of uranium from the region located at a distance of 5 cm from the lower flange (point I) 235 U isotope content varied from 0.91 % to 1.4 %. 235 U isotope content decreased to a level of 1.0 % with increasing the distance from the lower flange of the reactor (point II) up to 10 cm. 235 U content decreases to an average value of 0.97 %, but remains above the natural level with a further increase in the distance from the lower flange of the reactor up to 15 cm. The excess of 235 U isotope concentration over the natural level at points I–III, in our opinion, was due to the experimental conditions: at each point of extract separation the 235 U concentration corresponded to its local average content in the removed volume, the value of which was estimated to be about 0.45 of the total volume. The location of the experimental points of 235 U isotope concentration over the height of the reactor (black squares) is shown in Fig. 2. The X-axis direction is chosen from the cold reactor flange to the warm flange. The experimental points are well described by the linear dependence of the uranium isotope concentration  expy x on the normalized length x (the straight line in Fig. 2 passing through the experimental points), which was plotted using the least squares method:   0.67 0.85expy x x   . (1) The real distribution of the uranium isotope concentration is described by the lower straight line in Fig. 2, which is obtained from expression (1) after its normalization to the entire volume of the reactor:   0.3 0.85realy x x   . (2) The validity of the expression (2) is confirmed by calculating the average percentage of 235 U isotope over the height of the reactor     1 0 0.725real realy x y x dx   , which approximately corresponds to the natural. 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 C o n c e n tr a ti o n , 2 3 5 U ( % ) Normalized lenght (Arb. un.) Fig. 2. Dependence of 235 U isotope concentration on the reactor normalized length. Solid line – formula (1), dashed line – (2) Both straight lines in Fig. 2 characterize the uneven distribution of 235 U isotope over the reactor height. To check the correspondence between the content of 235 U isotope in the initial sample and its total content in the extract and in the residue after extraction we measured its content in the reactor after sample acquisition at point III. The measurements showed that the content of this isotope was below the natural level and corresponded to a value of 0.63% (see Table 1). The balance equation for the uranium isotope content in the extract and in the residue in the reactor is as follows:  0.97 0.63 1 0.72x x     , (3) where x – part of the volume of the supercritical fluid extracted from the reactor; the numerical coefficient for the first term is the amount of isotope extracted from the reactor at point III; the numerical coefficient for the second term is the amount of isotope remaining in the reactor; on the right side – the value of the natural amount of the isotope. It follows from (3) that part of the volume of the supercritical fluid extracted from the reactor is equal to 0.264x  , which corresponds to the value of the primary pressure release – 4.22 MPa. Thus, as a result of the experiments it was shown that at certain parameters of the supercritical fluid in a spatially inhomogeneous temperature field the 235 U isotope content is unevenly distributed over the reactor height: maximum at a distance of 5 cm from the lower flange (hotter) and decreases with a distance from it. COMPARATIVE ASSESMENT OF THE EFFICIENCY OF URANIUM ISOTOPE REDISTRIBUTION The spatial redistribution of the isotopic composition of natural uranium obtained in this work as a result of supercritical fluid extraction with carbon dioxide has an analogy with the problems of separating isotopes of various chemical elements. A series of such elements start from light elements Ar, Li [14, 21] and end with heavy ones – U, Pu [22, 23]. One of the parameters determined the efficiency of isotope separation is the separation factor [22, 23]. The separation factor for a mixture of two isotopes is determined by the expression: 1 , 1 1 c c c c            (4) where c and 1 c – concentration of light and heavy isotopes in the enriched mixture, respectively; c and 1 c – the same in the original mixture. From expression (2) it follows that at the height of the reactor 0.67x  the content of 235 U is equals to 0.861%. This uranium content corresponds to the separation factor with taking into account the measurement error (see Fig. 2): 0.8695 0.72 1.2 0.12    . Separation factors for uranium isotopes when using different separation methods are presented in Table 2. Table 2 Separation factors 235 U and 238 U in different separation methods [23] Separation method Separation factor,  Chemical enrichment [24] 1.0013…1.0030 Gas–diffusion enrichment 1.00429 Centrifugation (250 m/s) 1.026 Centrifugation (600 m/s) 1.233 Isotope separation in a system of opposite, axially symmetric magnetic fields [21] 30–40 СFE-СО2 1.2 ± 0.12 Analyzing the results of the experiments it can be concluded that the separation factor of 235 U isotope is about 1.2 ± 0.12 in the SFE-U setup. CONCLUSIONS Redistribution of 235 U isotope of natural uranium in a supercritical dioxide medium with a spatial temperature gradient is shown by experiments in the paper. The diagram of the reactor of the experimental setup is presented and the principle of its operation is described. The method of sample preparation and the procedure for the extraction of natural uranium from granite samples are described. The isotopic composition of uranium in the obtained extracts is determined using the method of gamma spectrometry. It is shown that at certain parameters of the supercritical fluid the concentration of 235 U isotope is nonuniformly distributed over the height of the reactor: its concentration is maximum near the lower heated flange of the reactor and decreases with approaching the upper, colder flange of the reactor. The separation factor of 235 U isotope in supercritical carbon dioxide is determined; it is equal to 1.2 ± 0.12. REFERENCES 1. B.E. Paton, A.S. Bakay, V.G. Bar'yakhtar, I.M. Neklyudov. O strategii razvitiya yadernoy energetiki v Ukraine. Kharkov: NNTs KhFTI, 2008, 62 s. (in Russian). 2. Fizicheskaya entsiklopediya. Sov. entsiklopediya. T. 5. Stroboskopicheskiye pribory – Dlinnyye linii / Gl. red. A.M. Prokhorov. Red. kol. D.M. Alekseyev, A.M. Baldin, A.M. Bonch-Bruyevich, A.S. Borovik- Romanov i dr. M., 1998, 692 s. (in Russian). 3. Ch. Kharrington, A. Ryuel. Tekhnologiya proizvodstva urana. M.: “Atomizdat”, 1961, 475 s. (in Russian). 4. B.V. Gromov, V.I. Savel'yev, V.B. Shevchenko. Khimicheskaya tekhnologiya obluchennogo yadernogo topliva. M.: “Energoatomizdat”, 1983, 352 s. (in Russian). 5. V.I. Zemlyanukhin, Ye.I. Il'yenko, A.N. Kondra- t'yev i dr. Radiokhimicheskaya pererabotka yadernogo topliva AES. M.: “Energoatomizdat”, 1989, 280 s. (in Russian). 6. A.A. Klyuchnikov, E.M. Pazukhin, Yu.M. Shi- gera, V.Yu. Shigera. Radioaktivnyye otkhody AES i metody obrashcheniya s nimi. Chernobyl': “IPB AES NAN Ukrainy”, 2005, 487 s. (in Russian). 7. V.A. Vasilenko, A.A. Yefimov, V.N. Yepimakhov, Ye.A. Konstantinov, A.I. Stepanov, I.K. Stepanov. Obrashcheniye s radioaktivnymi otkhodami v Rossii i stranakh s razvitoy atomnoy energetikoy: Sbornik. SPb.: OOO “NITS “Morintekh”, 2005, 304 s. (in Russian). 8. S. Stoler, R. Richards. Pererabotka yadernogo goryuchego. M.: “Atomizdat”, 1964, 648 s. (in Russian). 9. D.R. Payson, D.J. Bradley. Behind the Nuclear Curtain: Radioactive Waste Management in the Former Soviet Union // Battelle Press. 1997, 726 p. 10. S.F. Ivanova. Fiziko-tekhnologicheskiye mekha- nizmy povysheniya effektivnosti ekstraktsii urana sverkhkriticheskim dioksidom ugleroda: Avtoref. … kand. tekhn. nauk. Khar'kov: NNTs KhFTI, 2013, 19 s. (in Russian). 11. B.V. Borts, YU. G. Kazarinov, I.M. Neklyudov, S.F. Skoromnaya, V.I. Tkachenko. Sverkhkriticheskaya SO2 ekstraktsiya kompleksov urana iz granitov // Fizika i khimiya obrabotki materialov. 2010, N 3, s. 94-96 (in Russian). 12. M.D. Samsonov, A.YU. Shadrin, D.N. Shafikov, YU.M. Kulyako, B.F. Myasoyedov. Sverkhkriticheskaya flyuidnaya ekstraktsiya v sovremennoy radiokhimii // Radiokhimiya. 2011, t. 53, N 2, s. 97 (in Russian). 13. B.V. Borts, Yu.G. Kazarinov, S.A. Sirenko, S.F. Skoromnaya, V.I. Tkachenko. Vliyaniye vody na effektivnost' sverkhkriticheskoy SO2 ekstraktsii urana iz prirodnykh mineralov // Vestnik KhNU, seriya fizicheskaya “Yadra, chastitsy, polya”. 2012, vyp. 2/54/, N 1001, s. 125 (in Russian). 14. I.M. Neklyudov, N.A. Azarenkov, B.V. Borts, N.P. Odeychuk, S.F. Skoromnaya, V.I. Tkachenko. Sravneniye i analiz sushchestvuyushchikh metodov izvlecheniya urana i yego soyedineniy iz materialov atomnoy energetiki: Preprint. Khar'kov: NNTs KhFTI, 2008, 62 s. (in Russian). 15. B.V. Borts, Yu.G. Kazarinov, I.M. Neklyudov, S.A. Sirenko, S.F. Skoromnaya, V.I. Tkachenko. Eksperimental'noye issledovaniye obrazovaniya (mikro)kapel' iz rastvora vody v sverkhkriticheskom diokside ugleroda // Sverkhkriticheskiye flyuidy: Teoriya i Praktika. 2013, t. 8, N 2, s. 68 (in Russian). 16. A. Karam. The Natural Nuclear Reactor at Oklo: A Comparison with Modern Nuclear Reactors. http://en.wikipedia.org/wiki/Natural_nuclear_fission_rea ctor 17. E.D. Davis, C.R. Gould, E.I. Sharapov. Oklo Reactors and Implications for Nuclear Science // IJMPE. 2014, v. 23, N 4, 1430007, p. 1-40. 18. B.V. Borts, S.F. Skoromnaya, V.I. Tkachenko. Ustanovka dlya sverkh-kriticheskoy flyuidnoy ekstraktsii kompleksov urana iz tekhnogennykh mestorozhdeniy // Sb. nauchn. statey 7-y Mezhdunarodnoy konferentsii “Sotrudnichestvo dlya resheniya problemy otkhodov”. 7–8 aprelya 2010 g., Khar'kov, Ukraina, s. 28-30 (in Russian). 19. B.V. Borts, I.G. Goncharov, A.V. Mazilov, S.F. Skoromnaya, V.I. Tkachenko. Materialy i probopodgotovka dlya modelirovaniya sverkhkriticheskoy flyuidnoy ekstraktsii urana v srede dioksida ugleroda // Vestnik KHNU, seriya: fizicheskaya “Yadra, chastitsy, polya”. 2012, vyp. 4/56/, N 1025, s. 69 (in Russian). 20. T.E. Sampson. Gamma-Ray Isotopic Analysis Development at Los Alamos. Los Alamos National Laboratory Report LA-13667-MS. November 1999, 32 p. 21. B.S. Akshanov, V.F. Zelenskiy, N.A. Khizhnyak. Metod razdeleniya izotopov v sisteme vstrechny`kh, aksial`no-simmetrichny`kh magnitny`kh polej // VANT. 2000, n. 4, s. 198 (in Russian). 22. N.M. Sinev, B.B. Baturov. Ekonomika atomnoy energetiki. Osnovy tekhnologii i ekonomiki yadernogo topliva. M.: “Atomizdat”, 1980, 344 s. (in Russian). 23. I.N. Bekman. Yadernaya industriya: Kurs lektsiy. M.: Izd-vo MGU, 2005, 867 s. (in Russian). 24. Yu.V. Smirnov, I.A. Arhangelskiy, D.D. Sokolov i dr. Nauchno-eksperimentalnaya baza atomnoy promyishlennosti zarubezhnyih stran: Spravochnik / Pod red. A.K. Kruglova, Yu.V. Smirnova. M.: “Ener- goatomizdat”, 1987, 408 s. (in Russian). Article received 30.06.2021 ПРОСТРАНСТВЕННО-НЕОДНОРОДНОЕ РАСПРЕДЕЛЕНИЕ ИЗОТОПА 235 U ПРИ СВЕРХКРИТИЧЕСКОЙ ФЛЮИДНОЙ ЭКСТРАКЦИИ ДИОКСИДОМ УГЛЕРОДА В ГРАДИЕНТНОМ ПОЛЕ ТЕМПЕРАТУР Б.В. Борц, С.Ф. Скоромная, Ю.Г. Казаринов, И.М. Неклюдов, В.И. Ткаченко Экспериментально исследовано пространственное перераспределение изотопа 235 U природного урана в градиентном поле температуры по высоте реактора в сверхкритическом диоксиде углерода. Приведена схема и описан принцип работы реактора. Описаны метод подготовки исходных образцов из образцов гранитов, содержащих природный уран, и порядок проведения экстракции. Вывод о пространственном перераспределении изотопов 235 U в сверхкритическом диоксиде углерода основан на анализе гамма-спектров экстрактов. Показано, что в сверхкритическом флюиде концентрация изотопа 235 U максимальна вблизи нижнего подогреваемого фланца реактора, и уменьшается с приближением к верхнему, охлаждаемому фланцу. Сделан вывод о том, что коэффициент разделения изотопа 235 U в сверхкритическом диоксиде углерода может составлять величину около 1.2 ± 0.12. ПРОСТОРОВО-НЕОДНОРІДНИЙ РОЗПОДІЛ ІЗОТОПІВ 235 U ПРИ НАДКРИТИЧНІЙ ФЛЮЇДНІЙ ЕКСТРАКЦІЇ ДІОКСИДОМ ВУГЛЕЦЮ В ГРАДІЄНТНОМУ ПОЛІ ТЕМПЕРАТУР Б.В. Борц, С.Ф. Скоромна, Ю.Г. Казарінов, І.М. Неклюдов, В.І. Ткаченко Експериментально досліджено просторовий перерозподіл ізотопу 235 U природного урану в градієнтному полі температури по висоті реактора в надкритичному діоксиді вуглецю. Наведено схему і описаний принцип роботи реактора. Описані метод підготовки вихідних зразків із зразків гранітів, що містять природний уран, і порядок проведення екстракції. Висновок про просторовий перерозподілі ізотопів 235 U в надкритичному діоксиді вуглецю заснований на аналізі гамма-спектрів екстрактів. Показано, що в надкритичному флюїді концентрація ізотопу 235 U максимальна поблизу нижнього фланця реактора, що підігрівається, і зменшується з наближенням до верхнього охолоджуваного фланця. Зроблено висновок про те, що коефіцієнт поділу ізотопу 235 U в надкритичному діоксиді вуглецю може становити величину близько 1.2 ± 0.12.