Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam
Simulation of a ~21 t depleted uranium target irradiated by 1…10 GeV proton and deuteron particles with the help of FLUKA simulation package was carried out. Neutron spectra and neutron flux in a target volume were obtained. Total number of ²³⁵U (n,f), ²³⁸U(n,f) reactions occurred in a target were d...
Saved in:
Date: | 2021 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
Series: | Вопросы атомной науки и техники |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/195460 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam / V. Voronko, V. Sotnikov, V. Bukhal, K. Husak, I. Zhuk // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 13-16. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195460 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1954602023-12-13T12:58:01Z Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam Voronko, V. Sotnikov, V. Bukhal, V. Husak, K. Zhuk, I. Nuclear physics and elementary particles Simulation of a ~21 t depleted uranium target irradiated by 1…10 GeV proton and deuteron particles with the help of FLUKA simulation package was carried out. Neutron spectra and neutron flux in a target volume were obtained. Total number of ²³⁵U (n,f), ²³⁸U(n,f) reactions occurred in a target were determined. Beam particle power multiplication are calculated. The calculations were performed for the purpose of planning experiments on irradiation of a uranium target (22 tons of depleted uranium) at JINR (Dubna) within the framework of the international project “Energy and Transmutation of RAW”. Методом Монте-Карло за допомогою програмного коду FLUKA проведено моделювання опромінення квазінескінечної уранової мішені протонами і дейтронами з енергією 1…10 ГеВ. Представлені основні нейтронно-фізичні характеристики системи мішень плюс прискорювач. Отримано спектри вторинних частинок, що формуються в мішені, підраховані кількості реакцій ²³⁵U (n,f), ²³⁸U(n,f), що протікають в мішені при опроміненні протонами і дейтронами зазначених енергій. Визначено коефіцієнти посилення потужності пучка. Розрахунки виконані з метою планування експериментів з опромінювання уранової мішені (22 т збідненого урану) в ОІЯД (м. Дубна) в рамках виконання Міжнародного проекту «Енергія і трансмутація РАВ» Методом Монте-Карло с помощью программного кода FLUKA проведено моделирование облучения квазибесконечной урановой мишени протонами и дейтронами с энергией 1…10 ГэВ. Представлены основные нейтронно-физические характеристики системы мишень плюс ускоритель. Получены спектры вторичных частиц, формирующихся в мишени, подсчитаны количества реакций ²³⁵U (n,f), ²³⁸U(n,f), протекающих в мишени при бомбардировании протонами и дейтронами указанных энергий. Определены коэффициенты усиления мощности пучка. Расчеты выполнены с целью планирования экспериментов по облучению урановой мишени (22 т обеднённого урана) в ОИЯИ (г. Дубна) в рамках выполнения Международного проекта «Энергия и трансмутация РАО». 2021 Article Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam / V. Voronko, V. Sotnikov, V. Bukhal, K. Husak, I. Zhuk // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 13-16. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 29.27.Fh, 29.40.Wk, 29.90.+r DOI: https://doi.org/10.46813/2021-136-013 http://dspace.nbuv.gov.ua/handle/123456789/195460 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Nuclear physics and elementary particles Nuclear physics and elementary particles |
spellingShingle |
Nuclear physics and elementary particles Nuclear physics and elementary particles Voronko, V. Sotnikov, V. Bukhal, V. Husak, K. Zhuk, I. Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam Вопросы атомной науки и техники |
description |
Simulation of a ~21 t depleted uranium target irradiated by 1…10 GeV proton and deuteron particles with the help of FLUKA simulation package was carried out. Neutron spectra and neutron flux in a target volume were obtained. Total number of ²³⁵U (n,f), ²³⁸U(n,f) reactions occurred in a target were determined. Beam particle power multiplication are calculated. The calculations were performed for the purpose of planning experiments on irradiation of a uranium target (22 tons of depleted uranium) at JINR (Dubna) within the framework of the international project “Energy and Transmutation of RAW”. |
format |
Article |
author |
Voronko, V. Sotnikov, V. Bukhal, V. Husak, K. Zhuk, I. |
author_facet |
Voronko, V. Sotnikov, V. Bukhal, V. Husak, K. Zhuk, I. |
author_sort |
Voronko, V. |
title |
Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam |
title_short |
Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam |
title_full |
Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam |
title_fullStr |
Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam |
title_full_unstemmed |
Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam |
title_sort |
monte-carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 gev deuteron and proton beam |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2021 |
topic_facet |
Nuclear physics and elementary particles |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195460 |
citation_txt |
Monte-Carlo simulation of quasi-infinite depleted uranium target irradiated by 1…10 GeV deuteron and proton beam / V. Voronko, V. Sotnikov, V. Bukhal, K. Husak, I. Zhuk // Problems of Atomic Science and Technology. — 2021. — № 6. — С. 13-16. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT voronkov montecarlosimulationofquasiinfinitedepleteduraniumtargetirradiatedby110gevdeuteronandprotonbeam AT sotnikovv montecarlosimulationofquasiinfinitedepleteduraniumtargetirradiatedby110gevdeuteronandprotonbeam AT bukhalv montecarlosimulationofquasiinfinitedepleteduraniumtargetirradiatedby110gevdeuteronandprotonbeam AT husakk montecarlosimulationofquasiinfinitedepleteduraniumtargetirradiatedby110gevdeuteronandprotonbeam AT zhuki montecarlosimulationofquasiinfinitedepleteduraniumtargetirradiatedby110gevdeuteronandprotonbeam |
first_indexed |
2025-07-16T23:35:51Z |
last_indexed |
2025-07-16T23:35:51Z |
_version_ |
1837848542052352000 |
fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 13
https://doi.org/10.46813/2021-136-013
MONTE-CARLO SIMULATION OF QUASI-INFINITE DEPLETED
URANIUM TARGET IRRADIATED BY 1…10 GeV
DEUTERON AND PROTON BEAM
V.A. Voronko
1
, V.V. Sotnikov
1
, O.V. Bukhal
2
, K.V. Husak
2
, I.V. Zhuk
2
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2
State Scientific Institution “The Joint Institute for Power and Nuclear Research – Sosny»
NAS of Belarus, Minsk, Belarus
E-mail: voronko@kipt.kharkov.ua
Simulation of a ~21 t depleted uranium target irradiated by 1…10 GeV proton and deuteron particles with the
help of FLUKA simulation package was carried out. Neutron spectra and neutron flux in a target volume were ob-
tained. Total number of
235
U (n,f),
238
U(n,f) reactions occurred in a target were determined. Beam particle power
multiplication are calculated. The calculations were performed for the purpose of planning experiments on irradia-
tion of a uranium target (22 tons of depleted uranium) at JINR (Dubna) within the framework of the international
project “Energy and Transmutation of RAW”.
PACS: 29.27.Fh, 29.40.Wk, 29.90.+r
INTRODUCTION
Finding an appropriate solution for the long-term
disposal of nuclear waste is one of the biggest challeng-
es facing the nuclear industry.
The idea of using accelerators to breed fissile mate-
rial has been around since the early 1950’s [1, 2], how-
ever these early efforts were abandoned due to technical
and economic reasons.
Renewed interest in the 1980's and beginning of the
1990's in Japan (OMEGA project) and in the USA
(Brookhaven and Los Alamos) and in 1993 in CERN
forced to research the ADS again.
An ADS is a type of hybrid reactor and therefore re-
quires an external neutron source to sustain fission reac-
tions in the sub-critical fuel assembly. This neutron
source is a spallation neutron source which typically
arises from a high current (mA), high energy ion beam
impinging on a heavy metal target. The usefulness of an
ADS depends on its energy gain G, and the production
of neutrons which are used to maintain fission reactions,
breed fissile material and transmute nuclear waste.
This scheme can be implemented for real electronu-
clear method of neutron production with its energy
spectrum as hard as possible thanks to deeply subcriti-
cal, quasi-infinite (providing minimum leakage neu-
trons) active core based on natural (depleted) uranium
or thorium bombarded powerful beam of relativistic
particles. This neutron spectrum could allow the direct
utilization in active core of spent nuclear fuel of nuclear
power plants while producing energy. The deep subcrit-
ical active core without any moderator the size of which
provides minimal leakage of neutrons and allow one to
obtain maximally hard neutron spectrum inside.
The successful implementation of new method for
energy generation and waste transmutation would elim-
inate the need for nuclear waste storage on a geologic
time scale [3].
International project of Join Institute of Nuclear Re-
search “Energy and Transmutation of Radioactive
Wastes” (further is “E&T of RW”) is aimed to study the
basic characteristics of neutron fields inside deep sub-
critical quasi-infinite active core made of depleted ura-
nium metal, the spatial distributions of core nuclei fis-
sion, the transmutation reaction rates of long lived mi-
nor actinides and fission products as well as to define
optimal energy of incident beam for transmutation
RAW and energy production. The previous studies have
shown the need to study large targets [4 - 6]. One of the
planning research in the frame of “E&T of RW” is ex-
periments on quasi-infinite uranium target. In this article
results getting from Monte-Carlo simulation with the
FLUKA package [7, 8] to estimate main neutron-
physical characteristics are presented.
1. SIMULATION
The model of irradiated target used in this work is
shown on Fig. 1. It is a 120 cm in diameter and 100 cm
long cylindrical target of ~ 21 t depleted uranium. Tar-
get has a 10 cm diameter and 20 cm long beam entrance
window and is surrounded by 10 cm steel cover.
Fig. 1. Simulation target model
The simulation of irradiation with proton and deu-
teron with the energy 1…10 GeV were carried out. For
getting a statistically significant result the number of
incident particles were at least 10
6
.
Fig. 2 illustrates the secondary particle fluxes in tar-
get under 4 GeV deuteron beam. The shape of second-
ary particle fluxes for proton and deuteron beam is the
same, differ only amount.
At the energy under 8 GeV the amount of formed pi-
ons increases from 0.2 to 1% for proton and deuteron
beams. The amount of secondary neutrons is stay on the
same level with increasing of energy and equal to ~ 60%.
But multiplicity of neutron in a target with the in-
crease of energy is growth for both type of impinged
particles, Fig. 3.
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 14
Fig. 2. Secondary particles flux
Fig. 3. Neutron multiplicity
The amount of neutron is changing linearly with the
growth of energy from 50 to 470 for proton beam and
from 65 to 570 for deuteron beam.
The Table 1 illustrate the number of secondary par-
ticles created in the target under proton beam with ener-
gy 1…10 GeV. Percentage of secondary particle created
in target under deuteron beam almost the same.
Table 1
Secondary particles in target irradiated by proton
Secondary
particles
Number of secondary particles, %
1 GeV 2 GeV 4 GeV 8 GeV 10 GeV
Neutrons 59.8 59.8 59.1 58.8 58.9
Photons 35.4 35.0 35.0 35.1 35.0
Protons 4.0 4.0 3.9 3.8 3.7
Alfa-
particles
0.4 0.5 0.9 0.8 0.8
Deuteron 0.1 0.2 0.4 0.4 0.5
Pions 0.3 0.5 0.6 1.1 1.1
Not all secondary particles cause fission reactions.
Table 2 illustrates parts of different fission reactions
of total amount of fission in a target irradiated by
1…10 GeV deuteron.
Table 2
Secondary particles in target irradiated by deuteron
Reac-
tion
Number of reactions, %
1 GeV 2 GeV 4 GeV 8 GeV 10 GeV
(n, f) 84.7 85.2 84.4 82.5 80.3
(p, f) 5.3 7.2 7.7 7.7 7.9
(d, f) 9.0 4.4 2.0 1.0 1.3
(π, f) 1.0 3.2 5.9 8.7 10.2
(κ, f) – – – 0.1 0.3
(*, f) 100.0 100.0 100.0 100.0 100.0
Main contribution to the total amount of fissions in
the target bring secondary neutrons 70…80% for proton
projectiles and 80…85% for deuteron one. Fraction of
proton in a total amount of fission is from 28.3 to 8.6%
with increase of impinging proton energy and from 5.3
to 7.9% for impinging deuteron energy.
With the increase of energy of projectiles, the
growth contribution of (π, f) in a total amount of fission
reactions is observed from 1.0 to 10.2% for proton pro-
jectiles and from 1.8 to 11.7% for deuteron respectively.
The obtained results should be taken in account un-
der total uranium fission amount calculation and during
comparison of experimental results.
2. RESULTS AND DISCUSSION
2.1. NEUTRON SPECTRA
In the target irradiated by proton and deuteron the
wide spectra of neutrons are formed. On Fig. 4 neutron
spectra under proton beam are presented. Secondary
neutron energy spread up to the energy of incident par-
ticle. The shape of spectra in case of irradiation with
deuterons is similar differ only fluxes up to 1.13 times.
Fig. 4. Neutron spectra in target under proton beam
Radial (right) and axial (left) distribution of neutron
flux under 8 GeV deuteron irradiation are presented in
Fig. 5.
Fig. 5. Neutron distribution in the target
The highest neutron flux is formed on the way of
beam on the distance of 40 cm along Z axis, in radial
direction decreases exponentially to the zero. 3D repre-
sentation of neutron flux in the target irradiated by
10 GeV deuteron beam is presented in Fig. 6.
Fig. 6. Neutron flux in target under 10 GeV d beam
2.2. URANIUM FISSION
Using the obtained data of neutron flux in the target
the total number of
235
U(n,f),
238
U(n,f) reactions oc-
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 15
curred in the target are calculated. The proper cross-
section data for neutron energy up to 20 MeV were to-
ken from FLUKA file – there are 260 grouped cross-
section data. The cross-sections above 20 MeV were
retrieved from ENDF database by A. Patapenka [9].
Total amount of U
235
(n,f) fission differs from 1.58 to
14.97 for proton beam and from 1.79 to 17.30 for deu-
teron beam in 1…10 GeV energy interval. Total amount
of U
238
(n,f) fission differs from 14.61 to 137.72 for pro-
ton beam and from 16.86 to 155.31 for deuteron beam
in 1…10 GeV energy interval. The maximum fissions
are occurred under 2…4 GeV particle beam.
Specific number of U
235
(n,f), U
238
(n,f) reactions (rel-
ative to beam energy) are presented on Figs. 7 and 8
respectively.
Fig. 7. U-235 fission in the target
While total number of uranium fission growth line-
arly with the increase of energy, specific amount on
fission remain almost constant.
Fig. 8. U-238 fission in the target
As it is seen from the Figs. 7, 8 the amount of fission
reactions increases for ~ 12…14% for deuteron beam
compared to proton beam.
2.3. BEAM POWER GAIN
One of the parameter of ADS which should be esti-
mated is power gain, G. The beam particle multiplica-
tion was calculated by the following expression accord-
ing to [10].
pffp EEnEG /)( ,
where Ep is the accelerated particle energy (GeV); nf is
the uranium fission numbers in the uranium assembly
per one accelerated particle; Ef is the fission energy
which is equal to 0.197 GeV.
Getting the result of uranium fission in a target un-
der 1…10 GeV proton and deuteron beams allow us to
estimate a beam particle multiplication. Fig. 9 illustrates
obtained result.
The calculation shows the maximal beam power
multiplicity equal to ~ 4.5 for proton beam and ~ 5 for
deuteron beam in the range of energy 1…10 GeV.
Fig. 9. Beam power multiplicity
SUMMARY
The Monte-Carlo simulation of a quasi-infinite de-
pleted uranium target irradiated by 1…10 GeV proton
and deuteron particles with the help of FLUKA package
was carried out. Spectra of secondary particles generat-
ed in target are obtained. The fluxes of secondary parti-
cles in case of deuteron irradiation is ~15% higher than
under the proton one.
The part of generated neutron is lasted almost the
same with the growth of energy, amount of neutron is
increase lineally.
Total number of
235
U(n,f),
238
U(n,f) reactions oc-
curred in a target are calculated. With increase of beam
energy the amount of fission is growth but the specific
number of fission reactions is stay almost constant with
slight increase at the 2…4 GeV projectile beam.
Beam particle power multiplications were deter-
mined. Based on the obtained result we can summaries
that the optimal beam energy of projectiles is in
2…4 GeV range. Such results are in a good agreement
with the MCNPX simulation in [11]. But such conclu-
sion need to have experimental improvement. Obtained
result will be taken into account during experiment
preparation.
REFERENCES
1. P.V. Livdahl. The LIVERMORE MTA project and
its influence on modern LINACs / P.V. Livdahl //
Proceedings of the 1981 Linear Accelerator Confer-
ence. Santa Fe, New Mexico, USA, 1981, p. 5-11.
2. W.B. Lewis. The Significance of the Yield of Neu-
trons from Heavy Nuclei Excited to High Energies.
DR-24. Chalk River, Ontario: Atomic Energy of
Canada Limited, 1952.
3. C.D. Bowman et al. Nuclear energy generation and
waste transmutation using an accelerator-driven in-
tense thermal neutron source // Nuclear instruments
and methods in physics research. Section A. 1992,
A320, p. 336-367.
4. K. Husak et al. Recent results of the study of ADS
with 500 kg natural uranium target assembly
QUINTA irradiated by deuterons with energies from
1 to 8 GeV at JINR NUCLOTRON // XXI Interna-
tional Baldin Seminar on High Energy Physics
Problems “Relativistic Nuclear Physics and Quan-
tum Chromodynamics”. 2012, 10-15 Sept. JIPR Pro-
ceedings of Science.
5. V.А. Voronko et al. Estimation of the beam power
gain for deep-subcritical uranium assembly Quinta
under relativistic proton, deuteron and carbon nuclei
irradiation // Problems of Atomic Science and Tech-
ISSN 1562-6016. ВАНТ. 2021. № 6(136) 16
nology. Series “Nuclear Physics Investigations”.
2018, № 3, p. 183-187.
6. J. Adam et al. Measurement of the high energy neu-
tron flux on the surface of the natural uranium target
assembly QUINTA irradiated by deuterons of 4 and
8 GeV energy // Physics Procedia. 2015, v. 80,
p. 94-97.
7. T.T. Böhlen. The FLUKA Code: Developments and
Challenges for High Energy and Medical Applica-
tions / T.T. Böhlen, F. Cerutti, M.P.W. Chin,
A. Fassò, A. Ferrari, P.G. Ortega, A. Mairani,
P.R. Sala, G. Smirnov and V. Vlachoudis. Nuclear
Data Sheets. 2014, 120, p. 211-214.
8. A. Ferrari. FLUKA: a multi-particle transport code /
A. Ferrari, P.R. Sala, A. Fasso`, and J. Ranft,
CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-
773.
9. A. Potapenko et al. Studies on fission of U and Pb in
spallation neutron field of “Energy plus transmuta-
tion” setup // XVIII International Baldin Seminar on
High Energy Physics Problem “Proceeding of In-
ternational Seminar”. 2008, Dubna, 10-15 Sept. /
JINR, Dubna; editor: A.N. Sisakyan [eds.] Dubna,
2009, v. 1, p. 240-249.
10. V.А. Voronko et al. Estimation of the beam power
gain for deep-subcritical uranium assembly Quinta
under relativistic proton, deuteron and carbon nuclei
irradiation // Problems of Atomic Science and Tech-
nology. Series “Nuclear Physics Investigations”.
2018, № 3, p. 183-187.
11. V.S. Pronskich et al. Energy Production Demonstra-
tor and Material Testing Station optimization for
Megawatt proton beams // Annals of Nuclear Ener-
gy. 2017, v. 109, p. 692-697.
Article received 06.10.2021
МОНТЕ-КАРЛО МОДЕЛИРОВАНИЕ ОБЛУЧЕНИЯ КВАЗИБЕСКОНЕЧНОЙ МИШЕНИ
ИЗ ОБЕДНЁННОГО УРАНА ПУЧКАМИ ПРОТОНОВ И ДЕЙТРОНОВ С ЭНЕРГИЕЙ 1…10 ГэВ
В.А. Воронко, В.В. Сотников, О.В. Бухал, К.В. Гусак, И.В. Жук
Методом Монте-Карло с помощью программного кода FLUKA проведено моделирование облучения
квазибесконечной урановой мишени протонами и дейтронами с энергией 1…10 ГэВ. Представлены основ-
ные нейтронно-физические характеристики системы мишень плюс ускоритель. Получены спектры вторич-
ных частиц, формирующихся в мишени, подсчитаны количества реакций
235
U (n,f),
238
U (n,f), протекающих в
мишени при бомбардировании протонами и дейтронами указанных энергий. Определены коэффициенты
усиления мощности пучка. Расчеты выполнены с целью планирования экспериментов по облучению урано-
вой мишени (22 т обеднённого урана) в ОИЯИ (г. Дубна) в рамках выполнения Международного проекта
«Энергия и трансмутация РАО».
МОНТЕ-КАРЛО МОДЕЛЮВАННЯ ОПРОМІНЕННЯ КВАЗІНЕСКІНЧЕНОЇ МІШЕНІ
ІЗ ЗБІДНЕНОГО УРАНУ ПУЧКАМИ ПРОТОНІВ І ДЕЙТРОНІВ З ЕНЕРГІЄЮ 1…10 ГеВ
В.О. Воронко, В.В. Сотников, О.В. Бухал, К.В. Гусак, I.В. Жук
Методом Монте-Карло за допомогою програмного коду FLUKA проведено моделювання опромінення
квазінескінечної уранової мішені протонами і дейтронами з енергією 1…10 ГеВ. Представлені основні ней-
тронно-фізичні характеристики системи мішень плюс прискорювач. Отримано спектри вторинних частинок,
що формуються в мішені, підраховані кількості реакцій
235
U(n,f),
238
U(n,f), що протікають в мішені при
опроміненні протонами і дейтронами зазначених енергій. Визначено коефіцієнти посилення потужності
пучка. Розрахунки виконані з метою планування експериментів з опромінювання уранової мішені (22 т збід-
неного урану) в ОІЯД (м. Дубна) в рамках виконання Міжнародного проекту «Енергія і трансмутація РАВ».
|