Kinetic simulaton of CO₂ conversion in low-pressure electrodeless plasma
Kinetic model of processes in low-pressure inductively coupled plasma describing the carbon dioxide conversion is presented together with the modeling results. The model takes into account only direct electron impact dissociation of carbon dioxide and is valid at the lowest gas pressures and at a re...
Збережено в:
Дата: | 2022 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2022
|
Назва видання: | Problems of Atomic Science and Technology |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/195892 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Kinetic simulation of CO₂ conversion in low-pressure electrodeless plasma / S. Dudin, V. Lisovskiy, P. Platonov, S. Rezunenko // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 84-88. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Kinetic model of processes in low-pressure inductively coupled plasma describing the carbon dioxide conversion is presented together with the modeling results. The model takes into account only direct electron impact dissociation of carbon dioxide and is valid at the lowest gas pressures and at a reduced electric field > 150 Td. The influence of the gas mixture composition and the plasma density on the electron distribution function has been studied. In the low power limit when e-e collisions don't play a significant role the EEDF is strongly non-Maxwellian, but with the plasma density increase, EEDF is approaching Maxwellian distribution. Nitrogen and argon were studied as additions to CO₂. The influence of the calculated distribution function on the energy efficiency of carbon dioxide conversion has been studied. It was concluded that the electron temperature is the key parameter for the energy efficiency, which increases by a factor of 6 with temperature change from 3 to 10 eV and at Tₑ = 10 eV reaches values of more than 6 %. Comparison of the calculation results with experimental data shows satisfactory agreement. |
---|