Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces

Coefficients of neoclassical transport in tokamaks and stellarators with non-axisymmetric equipotential surfaces mis-aligned with magnetic flux surfaces are derived for the 1/ν regime. In the general case, they are given by integral expressions including field line integrals similar to those definin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
Hauptverfasser: Markl, M., Heyn, M.F., Kasilov, S.V., Kernbichler, W., Albert, C.G.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2022
Schriftenreihe:Problems of Atomic Science and Technology
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/195900
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces / M. Markl, M.F. Heyn, S.V. Kasilov, W. Kernbichler, C.G. Albert // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 9-12. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195900
record_format dspace
spelling irk-123456789-1959002023-12-08T12:59:11Z Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces Markl, M. Heyn, M.F. Kasilov, S.V. Kernbichler, W. Albert, C.G. Magnetic confinement Coefficients of neoclassical transport in tokamaks and stellarators with non-axisymmetric equipotential surfaces mis-aligned with magnetic flux surfaces are derived for the 1/ν regime. In the general case, they are given by integral expressions including field line integrals similar to those defining the effective helical ripple [V.V. Nemov et al. // Phys. Plasmas. 1999, v. 6, p. 4622]. For small mis-alignments in a tokamak with a simplified geometry, they are reduced to simple analytical expressions. Виведено коефіцієнти неокласичного переносу в токамаках та стелараторах з неспівпадаючими еквіпотенціальними та магнітними поверхнями для режиму 1/ν. У загальному випадку вони даються інтегральним виразом з інтегралами вздовж силових ліній, які подібні до тих, що визначають ефективну гвинтову модуляцію в роботі [V.V. Nemov et al. // Physics of Plasmas. 1999, v. 6, p. 4622]. Для малих неспівпадінь у токамаку зі спрощеною геометрією вони зводяться до простих аналітичних виразів. 2022 Article Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces / M. Markl, M.F. Heyn, S.V. Kasilov, W. Kernbichler, C.G. Albert // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 9-12. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.25.Dg, 52.25.Fi DOI: https://doi.org/10.46813/2022-142-009 http://dspace.nbuv.gov.ua/handle/123456789/195900 en Problems of Atomic Science and Technology Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Magnetic confinement
Magnetic confinement
spellingShingle Magnetic confinement
Magnetic confinement
Markl, M.
Heyn, M.F.
Kasilov, S.V.
Kernbichler, W.
Albert, C.G.
Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces
Problems of Atomic Science and Technology
description Coefficients of neoclassical transport in tokamaks and stellarators with non-axisymmetric equipotential surfaces mis-aligned with magnetic flux surfaces are derived for the 1/ν regime. In the general case, they are given by integral expressions including field line integrals similar to those defining the effective helical ripple [V.V. Nemov et al. // Phys. Plasmas. 1999, v. 6, p. 4622]. For small mis-alignments in a tokamak with a simplified geometry, they are reduced to simple analytical expressions.
format Article
author Markl, M.
Heyn, M.F.
Kasilov, S.V.
Kernbichler, W.
Albert, C.G.
author_facet Markl, M.
Heyn, M.F.
Kasilov, S.V.
Kernbichler, W.
Albert, C.G.
author_sort Markl, M.
title Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces
title_short Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces
title_full Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces
title_fullStr Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces
title_full_unstemmed Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces
title_sort non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2022
topic_facet Magnetic confinement
url http://dspace.nbuv.gov.ua/handle/123456789/195900
citation_txt Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces / M. Markl, M.F. Heyn, S.V. Kasilov, W. Kernbichler, C.G. Albert // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 9-12. — Бібліогр.: 5 назв. — англ.
series Problems of Atomic Science and Technology
work_keys_str_mv AT marklm nonaxisymmetricneoclassicaltransportfrommisalignmentofequipotentialandmagneticsurfaces
AT heynmf nonaxisymmetricneoclassicaltransportfrommisalignmentofequipotentialandmagneticsurfaces
AT kasilovsv nonaxisymmetricneoclassicaltransportfrommisalignmentofequipotentialandmagneticsurfaces
AT kernbichlerw nonaxisymmetricneoclassicaltransportfrommisalignmentofequipotentialandmagneticsurfaces
AT albertcg nonaxisymmetricneoclassicaltransportfrommisalignmentofequipotentialandmagneticsurfaces
first_indexed 2025-07-17T00:10:12Z
last_indexed 2025-07-17T00:10:12Z
_version_ 1837850702989230080
fulltext ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142). Series: Plasma Physics (28), p. 9-12. 9 https://doi.org/10.46813/2022-142-009 NON-AXISYMMETRIC NEOCLASSICAL TRANSPORT FROM MIS- ALIGNMENT OF EQUIPOTENTIAL AND MAGNETIC SURFACES M. Markl 1 , M.F. Heyn 1 , S.V. Kasilov 1,2,3 , W. Kernbichler 1 , C.G. Albert 1 1 Fusion@OEAW, Institute of Theoretical and Computational Physics, Graz University of Technology, Graz, Austria; 2 Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; 3 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: markl@tugraz.at Coefficients of neoclassical transport in tokamaks and stellarators with non-axisymmetric equipotential surfaces mis-aligned with magnetic flux surfaces are derived for the regime. In the general case, they are given by integral expressions including field line integrals similar to those defining the effective helical ripple [V.V. Nemov et al. // Phys. Plasmas. 1999, v. 6, p. 4622]. For small mis-alignments in a tokamak with a simplified geometry, they are reduced to simple analytical expressions. PACS: 52.25.Dg, 52.25.Fi INTRODUCTION In the standard neoclassical theory, the equilibrium electrostatic potential is assumed to be constant within magnetic flux surfaces, i.e. its equipotential surfaces are aligned with magnetic surfaces. An exception is for strong plasma rotation in tokamaks where the centrifugal force induces an axisymmetric miss- alignment – a dependence of the potential on the poloidal angle [1]. In stellarators, a small non- axisymmetric potential miss-alignment always exists due to finite ion orbit widths, which may affect neoclassical transport of high-Z impurities (see, e.g. [2, 3]) but produces only a correction for the transport of bulk plasma components. In tokamaks with external resonant magnetic perturbations (RMPs), non- axisymmetric miss-alignment of equipotential surfaces and magnetic surfaces causes in resonant layers around rational magnetic surfaces a significant radial transport of electrons which may exceed the anomalous transport [4]. In Ref. [4], this transport has been obtained in a quasilinear limit for the straight cylinder tokamak model ignoring the toroid city and, thus, also ignoring the effects associated with particle trapping. In the present work, we derive neoclassical transport coefficients for general toroidal magnetic and electrostatic field geometry staying, however, limited to a specific transport regime ‒ the regime ‒ valid for low plasma collisionality and low banana precession frequency, which should not exceed the collisional detrapping frequency. Normally, this is fulfilled for the electron component being the main driver for particle transport in tokamaks because the ion particle flux adjusts itself to the electron flux by viscous momentum transport so that the overall flux is ambipolar. Combined with the studies of mechanisms leading to the mis-alignment of equipotential surfaces, the result will be used for investigations of the increased particle transport caused by RMPs known as "density pump- out". The derivation here is based on the results of Ref. [5], where the effective helical ripple modulation has been derived. Those results are generalized here for the case where equipotential surfaces are not necessarily aligned with magnetic surfaces. This causes some re- definitions but generally leaves the main steps of Ref. [5] intact. 1. BASIC EQUATIONS We start with the stationary drift-kinetic equation ̂ (1) in guiding center variables ( ), where is the guiding center position, ( ) is the perpendicular adiabatic invariant containing the species- specific mass , the perpendicular particle velocity and the species-specific cyclotron frequency . Further, is the gyrophase and is the total energy containing the electric charge . Here, ̂ is the linearized Coulomb collision operator, and the guiding center velocity is given by (2) ( ) (3) where the curl is computed assuming that ( ) ( ( ( ) ( )) (4) 10 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) i.e. to be a function of the coordinates and constant invariants of motion and . The Jacobian of the phase space coordinates is | ( ) ( ) | | | (5) Further, the flux surface averaged normal particle flux density is defined as ∫ ∫ (6) where is the distribution function and is the flux surface area. For any distribution function, which, within the flux surface, depends only on integrals of motion but not on the coordinates (in particular, for a local Boltzmann distribution function), it can be shown that there is no flux surface averaged radial particle or total energy flux. This can be checked directly for the surface ( ) as follows ∫   ∑ ∫ ∫ ( ) ∑ ∫ [ ] ∫ [( ) ]  ∫ ( | | ) (7) where the surface integral of the curl is zero for both, passing particles, which occupy the whole flux surface area, and for trapped particles existing in the regions . In these regions, the integral is reduced via the Stokes theorem to the region boundaries where the sub- integrand is zero due to . Similarly, one can check that the total energy flux, which contains an extra factor in the sub-integrand, is also zero. Particle flux density (6) can be written via the species-specific fluid velocity as ∫ ⟨ ⟩ ⟨| | ⟩ (8) where the neoclassical flux surface average is defined in flux variables ( ) as ⟨ ⟩ (∫ ∫ √ ) ∫ ∫ √ (9) Using Newcomb’s theorem, this expression can also be written in terms of field line integrals in field aligned variables ( ) as ⟨ ⟩ (∫ ) ∫ (10) where these variables are defined via the safety factor as (11) such that labels the field lines. These variables have the same √ , and as the usual ones, while . Since , the product √ is constant on flux surfaces so that √ can be replaced by in (9), thus arriving at (10). 2. LMFP PARTICLE FLUX DENSITY Within the local neoclassical ansatz, the drift kinetic equation is solved by a series expansion over the radial drift velocity up to linear order using the ansatz .The equilibrium distribution function is given by a local Boltzmann distribution ( ) ̅ ( ) ( ( )) ( ̅( ) ( ) ) (12) where the parameter ̅is chosen so that the neoclassically averaged density ̅ is the same as the density computed from (12). By the above arguments, the fluxes are solely produced by the perturbation ( ). In the long mean free path (LMFP) regime, which is of interest here, the fluxes are produced by the leading order of in the collision frequency (its bounce averaged part) which is constant along the field lines, ( ). Obviously, in the passing particle domain, the leading order is independent of as well and contributes to the fluxes only in the trapped particle domain. Expressing the particle flux density (7) via field line integrals (10), where the field aligned coordinates are constructed from Boozer coordinates with a re-defined flux surface label such that ⟨| |⟩ , and performing similar transformations to those in Ref.[5] this contribution is in the general form ∫ [ ] ∫ [( ) ] [( ) ] (∫ √ ) ∑ (13) where ∫ | | (14) Here, the integration is along the field line , and the index enumerates the segments of this line where , with being the segment ends or turning points. Equation (13) does not assume that magnetic field and electrostatic potential modulations within the flux surface are small. It allows various classes of trapped particles including particles blocked by non-axisymmetric perturbations of both, the magnetic field and the electrostatic potential, which is most easily achieved even for small perturbations in a tokamak with perturbed toroidal symmetry near the extrema of the main axisymmetric magnetic field. If we ignore in those tokamaks the contributions of blocked particles and consider only the bounce averaged radial drift of usual bananas dominant at small perturbation amplitudes, eq. (13) simplifies to ∫ [ ] ∫ [( ) ] [( ) ]  (∫ √ ) ∫ (15) ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) 11 where denotes the main class of banana-trapped particles and corresponds to the unperturbed magnetic field. The heat flux density is obtained similarly by adding the average kinetic energy ̅ in the sub-integrand. Note that the above expressions are valid for the general case of the LMFP regime, not necessarily the regime. 3. SOLUTION OF THE BOUNCE AVERAGED EQUATION In the regime, the perturbation satisfies the linear bounce averaged equation. Using the Lorentz model for the collision integral, ̂ (16) where is the deflection frequency, this equation is √ ∫ | | (17) It corresponds to a particular class of trapped particles with a number of classes tending to infinity with a field line length . Neighbouring classes bounded by the same boundary layer , where simultaneously , and which have a minimum along the field line (for the aligned equipotential surfaces this corresponds to local maxima of B) are coupled together via boundary conditions (detailed discussion can be found in Ref. [5]). As shown in [5], all those boundary conditions are satisfied by the following first integral of the kinetic equation over , √ (18) Here, the derivative of the local Boltzmann distribution (12) is given as ( ̅ ) (19) where the thermodynamic forces are ̅ ̅ ̅ (20) Thus, particle flux (13) for the general case takes the form √ ∫ [ ]  ( ̅ )∫ [( ) ] [( ) ]  (∫ √ ) ∑ ( ) (21) This expression generalises the formula for the particle flux density of Ref. [5] for the case of non- aligned equipotential surfaces and reduces to that formula in case of alignment. In the latter case, the dependence of the quantities and on the kinetic energy can be factorized, which allows to factorize the integral over energy. Thus, all geometrical information is contained in the integral over the normalized perpendicular invariant which can be expressed in terms of the factor which formally defines effective helical ripple modulation . Below, we are interested in the case of weak potential perturbations in a tokamak, where one can ignore additional trapped particle classes and where the energy integral can be factorized as well. Expression (15) for this case gives √ (∫ √ ) ∫ [ ]  ( ̅ ) ∫ [( ) ] [( ) ] ∫ ( ) (22) 4. SMALL ELECTROSTATIC PERTURBATIONS AND AXISYMMETRIC MAGNETIC FIELD In the case of small electrostatic perturbations and an axisymmetric magnetic field, we can simplify ∫ ( ) (22) ∫ ( ) (23) where is the particle velocity module and ( ) ( ). Presenting the potential in the form ( ) ∑ ( ) (24) and computing the integral over , equation (21) takes the form ̅ √ √ (∫ √ ) ∫  √ ( ) ∫  (∫ ( ) ) ∑  |∫ ( ) | (25) where ( ). Note that the normalized heat flux is given by expression (25) with an extra factor in the sub-integrand. Thus, we obtain a matrix of Onsager-symmetric transport coefficients determined via thermodynamic forces as 12 ISSN 1562-6016. Problems of Atomic Science and Technology. 2022. №6(142) ̅ ( ) ̅ ( ) (26) If we approximate the collision as , where is the collision frequency for particles with energy , then transport coefficients are related by . (27) The simplest expression for is obtained for near- resonant potential perturbations, ( ) ( ) with | | , in a large aspect ratio circular tokamak with √ , and ( ( )) where and are values at the magnetic axis and . In this case, we arrive at √ ( | | ) CONCLUSIONS We have derived an integral formula for non- axisymmetric neoclassical transport fluxes in the regime in general toroidal devices with non-aligned equipotential and magnetic surfaces. The formula considers all possible trapped particle classes allowing for both, magnetic and electrostatic trapping. In the case of aligned surfaces, it reduces to the result of Ref. [5] defining the effective helical ripple. The formula can be evaluated using the field line integration technique similar to the one realized in the code NEO [5]. AKNOWLEDGEMENTS This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement № 101052200 – EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.MM gratefully acknowledges support from NAWI Graz and funding from the KKKÖ at ÖAW and the Friedrich-Schiedel Stiftung für Energietechnik. REFERENCES 1. P. Helander, D.J. Sigmar. Collisional Transport in Magnetized Plasmas. Cambridge University Press, 2002, 310 p. 2. H.E. Mynick // Phys. Fluids. 1984, v. 27, p. 2086- 2092. 3. J.M. Garcia-Regana et al// Nuclear Fusion. 2017, v. 57, p. 056004. 4. M.F. Heyn et al // NuclearFusion. 2014, v. 54, p. 064005. 5. V.V. Nemov et al // Phys. Plasmas. 1999, v. 6, p. 4622-46. Article received 08.10.2022 АКСІАЛЬНО-НЕСИМЕТРИЧНИЙ НЕОКЛАСИЧНИЙ ПЕРЕНОС ВНАСЛІДОК НЕСПІВПАДАННЯ ЕКВІПОТЕНЦІАЛЬНИХ ТА МАГНІТНИХ ПОВЕРХОНЬ М. Маркль, М.Ф. Хайн, С.В. Касілов, В. Кернбіхлер, К.Г. Альберт Виведено коефіцієнти неокласичного переносу в токамаках та стелараторах з неспівпадаючими еквіпотенціальними та магнітними поверхнями для режиму . У загальному випадку вони даються інтегральним виразом з інтегралами вздовж силових ліній, які подібні до тих, що визначають ефективну гвинтову модуляцію в роботі [V.V. Nemov et al. // Physics of Plasmas. 1999, v. 6, p. 4622]. Для малих неспівпадінь у токамаку зі спрощеною геометрією вони зводяться до простих аналітичних виразів.