Heating of nanoparticles in low-pressure plasma jets
The heating of nanoparticles in a low-pressure plasma jet was studied with the help of computer simulation. Modeling of the expansion of a plasma jet with a dispersed phase, which was a mixture of nanoparticles of two sizes, was carried out within the framework of a multi-fluid axisymmetric hydrodyn...
Збережено в:
Дата: | 2022 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2022
|
Назва видання: | Problems of Atomic Science and Technology |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/195911 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Heating of nanoparticles in low-pressure plasma jets / O.Yu. Kravchenko, I.S. Maruschak // Problems of Atomic Science and Technology. — 2022. — № 6. — С. 32-35. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The heating of nanoparticles in a low-pressure plasma jet was studied with the help of computer simulation. Modeling of the expansion of a plasma jet with a dispersed phase, which was a mixture of nanoparticles of two sizes, was carried out within the framework of a multi-fluid axisymmetric hydrodynamic model. As a result of the calculations, the spatial distributions of the plasma parameters at different times after the plasma jet injection were obtained. The simulation results show that the temperature of nanoparticles in the plasma jet depends not only on their size, but also on the percentage composition of the mixture of dust particles. The reason for this is the influence of the size of nanoparticles on the spatial distribution of ion concentration, which play a decisive role in the heating of dust particles due to recombination on their surfaces. |
---|