О математическом представлении параметров, зависящих от времени, в некоторых задачах глобальной геодинамики. І. Теоретические основы

Рассмотрена задача математически однородного представления параметров, зависящих от времени, при решении проблем глобальной геодинамики, связанных с обработкой спутниковых наблюдений (дифференциальной коррекцией орбит спутников). Поставлена и решена задача построения геодинамической (зависящей от вр...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1988
Автор: Марченко, А.Н.
Формат: Стаття
Мова:Russian
Опубліковано: Головна астрономічна обсерваторія НАН України 1988
Назва видання:Кинематика и физика небесных тел
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/198816
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О математическом представлении параметров, зависящих от времени, в некоторых задачах глобальной геодинамики. І. Теоретические основы / А.Н. Марченко // Кинематика и физика небесных тел. — 1988. — Т. 4, № 3. — С. 55-62. — Бібліогр.: 12 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Рассмотрена задача математически однородного представления параметров, зависящих от времени, при решении проблем глобальной геодинамики, связанных с обработкой спутниковых наблюдений (дифференциальной коррекцией орбит спутников). Поставлена и решена задача построения геодинамической (зависящей от времени) модели потенциала планеты в двух вариантах: при использовании традиционных разложений по шаровым гармоникам и при аппроксимации поля системой точечных масс. Как частный случай рассмотрено совместное описание гравитационного и приливного потенциалов планеты. Получены все необходимые формулы для перехода от рекомендуемых МАС теорий учета различных параметров, непрерывно зависящих от времени (например, нутация, приливная вариация UTI, земные приливы и т. д.) к их математически однородному описанию на заданных интервалах времени с помощью систем полиномов Чебышева первого рода.