Свойства коэффициентов основных рядов кеплеровского движения
Изучены свойства коэффициентов aₖ(x), bₖ(x) разложения орбитальных координат в ряд Фурье по кратным средней аномалии. Для aₖ(x), bₖ(x) и cₖ(x) = aₖ(x)—bₖ(x) установлены положительность, монотонность относительно индекса, монотонность или немонотонность относительно аргумента (эксцентриситета), полу...
Збережено в:
Дата: | 1988 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Головна астрономічна обсерваторія НАН України
1988
|
Назва видання: | Кинематика и физика небесных тел |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/199189 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Свойства коэффициентов основных рядов кеплеровского движения / К.В. Холшевников // Кинематика и физика небесных тел. — 1988. — Т. 4, № 6. — С. 79-83. — Бібліогр.: 3 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Изучены свойства коэффициентов aₖ(x), bₖ(x) разложения орбитальных координат в ряд Фурье по кратным средней аномалии. Для aₖ(x), bₖ(x) и cₖ(x) = aₖ(x)—bₖ(x) установлены положительность, монотонность относительно индекса, монотонность или немонотонность относительно аргумента (эксцентриситета), получены некоторые оценки. В частности, из них вытекает абсолютная и равномерная сходимость исследуемых рядов при всех значениях эксцентриситета из промежутка [0, 1] и всех вещественных значениях средней аномалии. |
---|