Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies
The interpretative potential of microscopic use-wear polishes is a factor of the scale of analysis. Observational surface area decreases in inverse proportion to magnification. In this paper I present the results of polishes on bone tools that have developed from fricative contact with nine dif...
Збережено в:
Дата: | 2022 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут археології НАН України
2022
|
Назва видання: | Археологія |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/199500 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies / J. Bradfield // Археологія. — 2022. — № 3. — С. 5-16. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-199500 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1995002024-10-11T15:18:47Z Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies Bradfield, J. Статтi The interpretative potential of microscopic use-wear polishes is a factor of the scale of analysis. Observational surface area decreases in inverse proportion to magnification. In this paper I present the results of polishes on bone tools that have developed from fricative contact with nine different materials. Microwear polish is viewed at five different magnifications. I show that 50x―200x magnification, or observational areas of 0.4―2.0 mm², is the most appropriate scale of analysis of use-wear polishes regardless of whether one is conducting morphological identifications or relying on surface texture analysis software. The images presented here are meant to serve as an online reference collection to allow use-wear analysts to visualise how polish appearances change at different levels of magnification. Більшість аналітиків, які вивчають спрацьованість артефактів, зазвичай використовують як малопотужну, так і високопотужну мікроскопію при дослідженні поверхонь знарядь; при цьому «малопотужна» починається приблизно від 30x―50x, а «високопотужна» сягає переважно 400x―500x збільшення. Потенціал інтерпретації мікроскопічних полірувань для спрацьованості є фактором масштабу аналізу. Площа поверхні спостережень зменшується в оберненій пропорції до збільшення. У цій роботі представлено результати полірування кістяних знарядь, які утворилися внаслідок фрикативного контакту з дев’ятьма різними матеріалами. Мікрозношувальне полірування розглядається з п’ятьма різними збільшеннями. Показано, що збільшення 50x―200x або ділянки спостереження 0,4―2,0 мм² є найбільш відповідною шкалою аналізу полірувань, що зношуються незалежно від того, чи проводите ви морфологічні ідентифікації, чи покладаєтесь на програмне забезпечення для аналізу текстури поверхні. Аналіз текстури поверхні пропагується як більш об’єктивна міра зносу, однак аналітик все одно повинен обрати ділянки для сканування та збільшення чи площу поверхні. Роблячи цей вибір, дослідник, по суті, повідомляє програмному забезпеченню, що він/вона вважає використанням-зношенням, а що він/вона вважає тафономічними змінами. Величезний діапазон можливих тафономічних змін і різні масштаби, на яких вони відбуваються, означають, що мова ще не йде про прямий процес віднімання значень шорсткості поверхні тафономічно змінених поверхонь зі знарядь для отримання їхніх чистих значень, які могли б указувати на їхню колишню функцію. Ми ще не на тій стадії, коли аналіз текстури поверхні дозволяє зрозуміти багатофункціональні знаряддя краще, ніж візуальне визначення. При 32-кратному збільшенні виробничі смуги залишаються чітко помітними на всіх поверхнях кісток (за винятком випадків, коли залізо використовувалося як контактний матеріал), а мікроскопічні деталі полірованої текстури не видно. Найбільш помітною втратою інформації при 500-кратному збільшенні є рельєф поверхні. Подано цілий спектр зображень, які слугуватимуть як довідкова онлайн-колекція, щоб спеціалісти з вивчення спрацьованості матеріалів могли уявити, як змінюється зовнішній вигляд полірування на різних рівнях збільшення. 2022 Article Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies / J. Bradfield // Археологія. — 2022. — № 3. — С. 5-16. — англ. 0235-3490 DOI: https://doi.org/10.15407/arheologia2022.03.005 http://dspace.nbuv.gov.ua/handle/123456789/199500 902.3-035.56 en Археологія Інститут археології НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Статтi Статтi |
spellingShingle |
Статтi Статтi Bradfield, J. Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies Археологія |
description |
The interpretative potential of microscopic use-wear
polishes is a factor of the scale of analysis. Observational
surface area decreases in inverse proportion to
magnification. In this paper I present the results of polishes
on bone tools that have developed from fricative
contact with nine different materials. Microwear polish
is viewed at five different magnifications. I show that
50x―200x magnification, or observational areas of
0.4―2.0 mm², is the most appropriate scale of analysis
of use-wear polishes regardless of whether one is
conducting morphological identifications or relying on
surface texture analysis software. The images presented
here are meant to serve as an online reference collection
to allow use-wear analysts to visualise how polish
appearances change at different levels of magnification. |
format |
Article |
author |
Bradfield, J. |
author_facet |
Bradfield, J. |
author_sort |
Bradfield, J. |
title |
Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies |
title_short |
Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies |
title_full |
Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies |
title_fullStr |
Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies |
title_full_unstemmed |
Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies |
title_sort |
scales of analysis: the usage of appropriate magnification in use-wear studies |
publisher |
Інститут археології НАН України |
publishDate |
2022 |
topic_facet |
Статтi |
url |
http://dspace.nbuv.gov.ua/handle/123456789/199500 |
citation_txt |
Scales of Analysis: the Usage of Appropriate Magnification in Use-Wear Studies / J. Bradfield // Археологія. — 2022. — № 3. — С. 5-16. — англ. |
series |
Археологія |
work_keys_str_mv |
AT bradfieldj scalesofanalysistheusageofappropriatemagnificationinusewearstudies |
first_indexed |
2024-10-12T04:01:59Z |
last_indexed |
2024-10-12T04:01:59Z |
_version_ |
1812679328633192448 |
fulltext |
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 3 5
Статтi
УДК 902.3-035.56
https://doi.org/10.15407/arheologia2022.03.005
© J. BRADFIELD* 2022
SCALES OF ANALYSIS:
THE USAGE OF APPROPRIATE MAGNIFICATION
IN USE-WEAR STUDIES
The interpretative potential of microscopic use-wear
polishes is a factor of the scale of analysis. Observa-
tional surface area decreases in inverse proportion to
magnification. In this paper I present the results of pol-
ishes on bone tools that have developed from fricative
contact with nine different materials. Microwear polish
is viewed at five different magnifications. I show that
50x―200x magnification, or observational areas of
0.4―2.0 mm2, is the most appropriate scale of analy-
sis of use-wear polishes regardless of whether one is
conducting morphological identifications or relying on
surface texture analysis software. The images presented
here are meant to serve as an online reference collec-
tion to allow use-wear analysts to visualise how polish
appearances change at different levels of magnification.
Key words : use-wear; microscopy, scales of analy-
sis, magnification, texture analysis.
Introduction
Use-wear analysis has come a long way since its
development by Serhii Semenov (1964) in the
1950’s. Initially restricted to low-power micros-
copy (defined here as less than 100x magnifica-
tion), the benefits of high-power magnification to
visualise the microscopic details of polished sur-
faces soon became apparent (Keeley 1974). Most
use-wear analysts now routinely make use of
both low and high-powered microscopy in their
examinations of tool surfaces, with “low” typi-
cally starting at around 30x―50x and “high” typ-
ically reaching between 400x―500x magnifica-
tion. The consensus seems to be that low-pow-
er magnification is most profitably used for the
initial observation of polish distribution, while
higher magnifications are used to describe spe-
cific features of the polish. The most useful mag-
nification range for studying use-wear polishes
seems to be around 100x to 200x (e.g. Keeley,
Newcomer 1977; Griffitts 2001; Fullagar 2006;
Scott et al. 2005; Gates St-Pierre 2007; Brad-
field 2015; Evora 2015; Marreiros et al. 2015;
Chabot et al. 2017; Falci et al. 2019; Hohenstein
et al. 2020). Polishes are perhaps the most rele-
vant use-wear feature for identifying the nature
of contact materials ― that is whether the con-
tact material was hard or soft, course-textured or
fine (Vaughn 1985; Ibáñez, Mazzucco 2021). Al-
though polish may form due to a variety of caus-
es unrelated to usage (Grace 1990), it is generally
understood that its formation on stone and bone
artefacts is a dynamic process that differs from
one type of contact material to another (Ibáñez,
Mazzucco 2021). It is this dynamic nature of pol-
ish accrual that allows analysts to distinguish be-
tween different types of contact materials, wheth-
er it is in a general sense of hard and soft mate-
rials, or more specifically such as between fresh
hide, wood and iron (Christadou 2008; Stone
2013; Bradfield 2015: table 2).
Although it is seldom explicitly acknowl-
edged, the scale of analysis is a critical aspect
in the interpretation of use-wear features. Dif-
ferent magnifications are used depending on the
type of use-wear features in which an analyst is
interested. The interpretative potential and accu-
racy changes at each level of magnification (An-
drefsky 2008). For example, analysts interested
in how a tool was made (either through scraping
with a blade or grinding against an abrasive sur-
face) or the type of activity a tool was involved in
(whether it was used in a cutting, slicing or chop-
ping motion), would generally use lower magni-
fications, as these features are best viewed with
a wider perspective. Magnifications that are too
high risk losing the forest from the trees (con-
textual and associative information is lost). Mag-
* BRADFIELD Justin ― PhD, Associate Professor, Palaeo-
Research Institute, University of Johannesburg, ORCID
0000-0002-6139-6227, justinb@uj.ac.za
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 36
nifications that are too low risk losing the trees
from the forest (detail necessary to identify con-
tact material is sacrificed). Surfaces that appear
smooth under low magnification may appear
rough and deformed under higher ones (Scott et
al. 2005). It therefore stands to reason that the
terminology we use to describe microwear fea-
tures is dependent on the particular magnifica-
tion being used. However, despite this seeming-
ly obvious fact, I am aware of only one publica-
tion that attempts a systematic description of the
changes in polish microwear appearance at dif-
ferent magnifications. Alexandra Legrand and Is-
abelle Sidéra (2007) presented a description of
microfeatures at 32x, 100x and 200x that devel-
oped on experimental bone awls used to perfo-
rate fresh hide and wet bark. Yet, as has recently
been pointed out (Desmond et al. 2018), use-wear
studies that employ different methods often pres-
ent their micrographs at different magnifications
and either present their magnifications differently
(either as a scale bar or as a stipulated magnifica-
tion) or do not provide a scale or magnification at
all. This can make trying to compare micrographs
and use-wear descriptions between studies chal-
lenging, if not impossible.
In an attempt to address this issue, I present
here a descriptive and visual assessment at vary-
ing levels of magnification (32x, 50x, 100x, 200x
and 500x) of use-wear polishes that have been
produced on bone tools with nine different con-
tact materials. By doing so, I hope to show that the
scale of analysis (inclusive of magnification and
observational area) is as important as the particular
technique (light microscopy, interferometry, sur-
face texture analysis, etc.) used to obtain an image
of the polished surface, and that our descriptions
and measurements of particular micro-features
must be cognisant of the scale of analysis. If noth-
ing else, the presentation at graded increments of
use-wear polish of different materials should pro-
vide the aspiring use-wear analyst a useful set of
comparative material on which to draw.
Magnifications in use-wear studies
Low-power magnification is usually used for an
initial examination of artefacts thought to have
use-wear. Low-power, stereo-microscopes are
readily accessible, provide a good depth of field
for larger areas and provide an appropriate scale
at which to observe the distribution and extent
of polishes and the boundaries between zones of
contact (Rots 2005; Buc, Loponte 2007; Gates St-
Pierre 2007; Evans, Donahue 2008; Buc 2011; Van
Gijn 2014). Contrary to what some authors have
suggested (e.g., Odell, Vereecken 1980; Choyke,
Daróczi-Szabó 2010; Akhmetgaleeva 2017; Zhilin
2017; Halett et al. 2021), most analysts, including
myself, have found magnifications much below
100x insufficient to identify contact materials,
except perhaps at a generic level of hard vs soft.
Indeed, the low-power micrographs provided
by some of the above-referenced authors do not
show sufficient detail to be able to confidently
identify the contact material responsible for polish
formation (cf. Akhmetgaleeva 2017; Zhilin 2017;
Halett et al. 2021). Macro-scale damage, such
as manufacturing wear, edge chipping, hafting
damage and various taphonomic signatures
are, however, best viewed at low-magnification
(Lyman 1994; Fisher 1995; Griffitt, Bonsall 2001;
Li, Shen 2010; Evora 2015).
Most taphonomic damage, whether it is from
insects (Backwell et al. 2012; Holden et al. 2013),
butchery (Bello et al. 2011), trampling (Reynard
2013) or the dissolution of the bone surface due to
weathering (Martisius et al. 2020) are best viewed
at <40x magnification, although certain features
and fine-grained details may require higher magni-
fications (Backwell et al. 2012; Fernandez-Jalvo,
Andrews 2016). Manufacturing traces and crude
use-wear, such as such as that which develops-
from digging activities and soft-hammer percus-
sion, is also best observed at low magnifications
of between 20x―50x (Backwell, d’Errico 2001;
d’Errico, Backwell 2003; Blasco et al. 2013; Brad-
field, Antonites 2018; Stammers et al. 2018; Ma-
teo-Lomba et al. 2019; Pante et al. 2020).
High-power magnification (up to 500x) is typ-
ically used for more detailed examination of a
tool’s surface, particularly in the characterisation
of polishes and the micro-striations found there-
in (Knutsson 1988; d’Errico 1993; LeMoine 1994;
Christensen 1999; Griffitts, Bonsall 2001; Do-
nahue et al. 2002; Buc, Loponte 2007; Gates St-
Pierre 2007; Van Gijn 2007; Buc 2010). Certain
features that are important for identifying and dif-
ferentiating contact materials, such as micro-stria-
tions, micro-pitting on bone, surface cracking and
poorly developed volume deformations are best
viewed at ~100x magnification (Griffitts 2001;
Legrand, Sidéra 2007). Some course-grained and
reflective materials, such as quartz, may require
very high magnifications (~500x) to observe use-
wear (Dubreuil et al. 2015; Chabot et al. 2017).
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 3 7
Analysts interested in adhesive morphological res-
idue analysis would also typically rely on high-
er magnifications, starting at 200x up to perhaps
1000x (Cooper, Nugent 2006; Lombard, Wadley
2007; Medina et al. 2018).
Notwithstanding the broad consensus on the
scale of magnifications necessary for use-wear
analysis, the subjective nature of the inferences
drawn from observations, a lack of standardised
descriptive criteria and the problem of equifinali-
ty have occasioned the use an ever-growing varie-
ty of surface imaging and measurement techniques
(Grace 1989; von den Dries, Van Gijn 1997; Van
Gijn 2014; Marreiros et al. 2015). These tech-
niques are intended to quantify microwear features
and thereby provide a greater degree of objectivity
to interpretations (Grace et al. 1985). Indeed, most
of these studies have shown that polishes produced
experimentally can be distinguished on the basis
of various quantifiable attributes, and certain ac-
tivities can be differentiated on the basis of surface
roughness variables (d’Errico, Backwell 2003,
2009). However, I would argue that these tech-
niques still need to be applied at the appropriate
scale of analysis (both in terms of magnification
and areal coverage) to be useful.
Interferometry (Dumont 1982), atomic force
microscopy (Kimball et al. 1995), confocal mi-
croscopy (Evans, Donahue 2008) and close-
range photogrammetry (Zupancich et al. 2019)
are all techniques that facilitate the use of var-
ious texture analysis software (González-Urqui-
jo, Ibáñez-Estévez 2003) designed to measure
and quantify the various topographic features on
a tool surface, thus allowing the differentiation
of polish type, degree of wear and manner of us-
age. Data can also be stored and used as interpre-
tative analogues in future studies. Depending on
the type of device, availability to researchers and
individual analyst preferences, effective magnifi-
cations can range from 50x to 200x, with scan ar-
eas typically being in the region of 0.1―1.0 mm2
(González-Urquijo, Ibáñez-Estévez 2003; Scott
et al. 2005; Evans, Donahue 2008; d’Errico,
Backwell 2009; Martisius et al. 2020; Ibáñez,
Mazzucco 2021). The trouble is that because the
various surface roughness parameters are calcu-
lated from and normalised based on the scanned
area it becomes difficult, if not inappropriate, to
compare the results obtained at different scales of
analysis. As noticed by R. Scott et al. (2005) in
reference to dental microwear, and as I will show
here, surface features can appear very different
at different magnifications and sometimes certain
diagnostic microwear features occur over a larger
area than may be accommodated in the scan field.
For example, even though L. R. Kimball et al.
(1995) and J. Ibáñez, N. Mazzucco (2021) both
employ texture analysis at 200x magnification,
one cannot directly compare the results obtained
across a 15 μm2 area, in the case of the former,
with measurements obtained over a 450 μm2 area,
in the case of the latter.
One way around this problem is to use digital
masking techniques to filter out those areas of the
surface that ought not to be included in the surface
roughness calculation (Borel et al. 2021). Filtering
out natural, unworked surfaces or surfaces affect-
ed by taphonomic alterations means that observa-
tional area is less important as one can select only
those areas one wants to include in the calculation.
However, one still needs to visually, and therefore
subjectively, identify those areas that have bone
fide use-wear and distinguish them from those ar-
eas that do not. For this reason, A. Borel and col-
leagues view quantification techniques as a com-
pliment to qualitative observations rather than a
replacement. I am inclined to agree.
A new technique that has recently been applied
to use-wear analysis is reflectance transforma-
tion imaging (Malzbender et al. 2001; Desmond
et al. 2018). Similar to close-range photogramme-
try (see Zupancich et al. 2019), reflective transfor-
mation imaging uses multidirectional light sourc-
es to calculate normalised surface roughness pa-
rameters and interpolate 3D surface texture based
on how light is reflected off the surface. It permits
the user to generate 3D maps that allow the sur-
face to be viewed in relief from different posi-
tions. Purportedly offering higher resolution than
traditional 3D scans, it is touted as being able to
avoid the incommensurability of results obtained
at different magnifications, thus negating the need
for qualitative descriptions. It is also considered a
more objective measure than static photographs
that focus on certain features felt to be important
by the analyst. With magnifications ranging from
10x―50x it is unclear, however, how simply alter-
ing the light source to increase the visibility of sur-
face topography features (which can be done with
most stereo-microscopes) can improve the visual-
isation of diagnostic microwear features that are
too small to be seen at 50x magnification. Certain-
ly, the surface details of worked bone tools cho-
sen for presentation by A. Desmond et al. (2018)
are insufficient to allow independent verification
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 38
of the authors’ interpretations based on a tradition-
al observation-based microwear analysis.
Methods
Nine bone blanks were prepared from cow and
springbuck metapodials. The bone was fractured and
trimmed into similar lengths. The periosteal surface
was brushed with a Ryobi mechanical grinder
to create a smooth, flat, homogenous-textured
surface. Contact materials were selected based on
ready availability and also on what is frequently
identified in the archaeological record, namely
bone, mercerised cotton fabric, heterogenous-
grained soil, tanned leather, iron, fresh hide, soft
plant material (in this case the hardened stalk of
a canna sp.), and acacia sp. wood. The periosteal
surface of each bone blank was manually rubbed on
one contact material for 30 minutes. This period of
time is generally considered sufficient for diagnostic
traces to develop on bone tools (LeMoine 1994;
Griffitts 1997; Buc, Loponte 2007). The motion was
mostly longitudinal to the long axis of the bone, but
Von Den Dries and Van Gijn (1997) have shown
that the surface topography deformation and polish
formation are independent of the motion applied.
Microscopic analysis was conducted at 32x us-
ing an Olympus SZX16 stereomicroscope and at
higher magnifications (50x, 100x, 200x and 500x)
using an Olympus BX51M reflected light micro-
scope. Both microscopes were mounted with a
DP72 camera. These increments were determined
based on the microscope objective lenses and also
because they are the standard magnifications under
which use-wear is usually observed. Surfaces that
had developed polish as a result of use formed the
focal areas and, in most cases, micrographs were
taken at different magnifications over the same fo-
cal point. I used Stream Essentials imaging soft-
ware and the extended focus image (EFI) function
to get the entire image in focus at the higher magni-
fication range. The size of the focal area is depend-
ent on the magnification used and is influenced by
whether the specimen is observed through the eye-
piece of the microscope or on the computer moni-
tor via the mounted camera. For my purposes, Ta-
ble 1 presents the effective focal or observation-
al areas at each magnification increment as they
appear in the micrographs, that is as they would
appear on the computer monitor and not through
the microscope eyepiece. I assume that most peo-
ple doing use-wear analysis look at the computer
screen and not through the microscope eyepiece.
Results
The appearance of the polishes that accrue from
different contact materials as they appear under
the five different magnifications are presented
in figs. 1―9. The descriptions are my own, but
largely follow those for bone use-wear as laid out
in various papers of the Worked Bone Research
Group proceedings (e.g., Gates St-Pierre, Walker
2007 but also see Von Den Dries, Van Gijn 1997;
Bradfield 2014: table 5.1.2).
Figs. 1―3 show polish that has developed
from contact with soft, malleable, animal mate-
rials. At 32x magnification we can see the pres-
ence, and extent and distribution, of invasive, dull
polished and smoothed, domed high point topog-
raphy, but, we cannot see any other features that
are characteristic of soft materials, such as micro
pitting and fine, shallow oblique striations. These
latter features are clearly visible at 50x―200x. At
500x magnification the micro pitting has disap-
Fig. 1. Polish produced by working wet hide for 30 minutes
viewed at different magnifications
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 3 9
peared entirely, as too has a sense of the smooth,
rounded surface topography. At 500x magnifica-
tion the surface visible in the field of view appears
flat. The micro-striations of leather polish continue
to be more pronounced than their softer variants. It
can also be noticed that at 32x magnification leath-
er polish does not obscure the manufacturing trac-
es as completely as fresh hide or hand polish.
Figs. 4―6 show a variety of hard and soft
plant-based materials. Manufacturing traces and/
or original natural bone surface features remain
visible up to 200x magnification on the speci-
mens that contacted softer plant materials, where-
as the wood polish has obliterated all manufactur-
ing traces at 50x magnification. The micro-stria-
tions, micro-pitting and “comet-tails” (see Von
Den Dries, Van Gijn 1997) appear similar from
50x to 200x magnification across all three plant
materials. Wood polish produces a very flat focal
area, whereas mercerised cotton fabric produces
a rounded appearance similar to that seen among
the animal-based contact materials at 50x―200x.
Once again, except for wood, 500x magnification
provides too few, if any, identifiable features to al-
low an accurate assessment of contact material.
The long, pronounced unidirectional micro-stria-
tions characteristic of wood working are only visi-
ble at 50x magnification and beyond.
Other hard materials, like bone (fig. 7) and
wrought iron (fig. 8) present similar features to
Fig. 3. Polish produced by rubbing the bone specimen
against tanned leather for 30 minutes viewed at different
magnifications
Magnification Focal area
32x 4 mm2
50x 2 mm2
100x 0.8 mm2
200x 0.4 mm2
500x 0.2 mm2
Table 1. Relationship between effective magnification and
visible surface area. Note that the surface area is greater when
viewing specimens directly through the microscope eyepiece
Fig. 2. Polish produced by rubbing the bone specimen between
fingers for 30 minutes viewed at different magnifications
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 310
wood at 500x, but are sufficiently different and
distinguishable at lower magnifications. The
bright polish and tightly grouped directional stri-
ations indicative of metal-imparted polish (see
Christadou 2008) are visible between 50x―200x,
but indistinguishable at lower and higher magni-
fications. Among these three hard materials only
metal polish displays characteristic micro fea-
tures at 32x magnification, whereas wood and
bone polish are scarcely distinguishable at this
low magnification range. Indeed, bone polish ap-
pears more closely related to leather polish than
to wood at this magnification level.
Use-wear that develops on bone as a result of
digging in heterogenous-grained soil presents as
compact sets of wide, corrugated, wavy striations
(although the appearance is very much depend-
ant of the specific soil composition). This particu-
lar soil composition lacked the tiny quartz crys-
tals responsible for typical perpendicular cracking
sometimes seen inside individual striations. While
these features are more or less visible throughout
the magnification range, at 500x only four stria-
tions appear in the focus area hampering an accu-
rate identification.
Discussion
What I hope is immediately apparent even from just
a cursory look over all the figures is that the sur-
face features displayed at 32x magnification and
those displayed at 500x look vastly different both
from one another and from those at the intermediate
magnification range. Across all contact materials
micro-feature comparability is present at 50x, 100x
and 200x, but not at lower or higher magnifications.
Indeed, the features that are considered most indic-
ative of contact material are most easily identifia-
ble and distinguishable between 50x and 200x mag-
nification. In their study of bone awls, A. Legrand,
Fig. 5. Polish produced by rubbing the bone specimen against
mercerised cotton fabric for 30 minutes viewed at different
magnifications. Note the periosteal surface of this specimen
did not undergo any manufacturing process, which is why
these traces are not visible in the micrographs
Fig. 4. Polish produced by defleshing the hardened stalk of a
canna sp. for 30 minutes viewed at different magnifications
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 3 11
I. Sidéra (2007) remarked that only at 100x mag-
nification did differences in use-wear patterns be-
tween contact materials become discernible. This is
why in the literature most micrographs of use-wear
are presented at 100x magnification, which equates
to a 0.8 mm2 observational area. At 32x magnifica-
tion, manufacturing striations remain clearly visible
on all bone surfaces (except where iron was used as
a contact material) and microscopic details of pol-
ish textures are not visible. The most noticeable in-
formational loss at 500x magnification is surface
topography. This is partly due to the artificial flat-
tening of the EFI function, but also to the reduced
focal area. The latter problem is most noticeable in
figs. 1 and 2 where the rounded high point topogra-
phy, diagnostic of contact with soft, malleable ma-
terials, may be entirely absent from view beyond
100x magnification.
Another aspect worth mentioning, wich is sel-
dom acknowledged in studies of experimentally
replicated use-wear polishes, is that bone and stone
tools recovered from archaeological contexts seldom
occur in the absence of taphonomic surface altera-
tions (but see Martisius in press). One of the chal-
lenges of use-wear analysis of archaeological mate-
rial is to disentangle what is use-related from what is
taphonomic. Taphonomic marks are typically iden-
tified visually, at much lower magnifications based
on their specific morphology (Fernande-Jalvo, An-
drews 2016), although recent studies have made an
attempt to characterise non-specific taphonomic al-
terations by their surface roughness parameters using
a 0.8 mm2 observational area (Martisius et al. 2020).
Nevertheless, the sheer range of possible taphonom-
ic alterations, their equifinality (Lyman 2004) and the
different scales at which they occur mean that it is
not yet a straight-forward process of subtracting sur-
face roughness values of taphonomically altered sur-
faces from tools to arrive at their unadulterated val-
ues that could indicate their past function (Malburg
Fig. 6. Polish produced by rubbing the bone specimen against
a block of fresh acacia sp. wood for 30 minutes viewed at
different magnifications
Fig. 7. Polish produced by rubbing the bone specimen against
another piece of unworked bone for 30 minutes viewed at
different magnifications
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 312
2019). While digital masking applications may pro-
vide a way, they presuppose a visual distinction be-
tween use-wear features and taphonomic alterations
(Borel et al. 2021). Nor has the extent to which au-
tomated processes like RTI can distinguish between
natural and anthropogenic alterations been demon-
strated (see Desmond et al. 2018). Nor are we yet at
the stage where these surface texture analysis tech-
niques can disentangle multi-purpose tools any bet-
ter than visual identification. It is worth mentioning
here that different devices calculate magnifications
differently (Dubreuil et al. 2015; Plisson 2018). A
100x magnification on a microscope is not necessari-
ly directly comparable to an equivalent magnification
indicated on a digital camera. Digital magnifications
merely enlarge an image rather than increase the ac-
tual sensor plane. Such incommensurability between
techniques also needs to be taken into account.
There is no doubting the benefits derived from
microwear quantification techniques. It is undeni-
able that this avenue is the future of use-wear stud-
ies. However, we should not forget that even the
most sophisticated surface roughness quantifica-
tion technique is not wholly objective. The ana-
lyst must still choose which areas to analyse and
at what magnification, or over what surface area
(see Martisius in press). This is partly a choice and
partly dictated by the measurement parameters of
the specific instrument one uses. Because the ob-
servational area is inversely proportional to the
magnification, we can see that the number of sur-
face features decreases at each level of magnifi-
cation as the observational area narrows. At 500x
magnification (or 0.2 mm2), too few features are
incorporated within the field of view and it is diffi-
cult to distinguish between even course categories
of contact material such as hard vs soft. Even a sur-
face roughness measurement of such a small area
risks missing the forest from the trees. Converse-
ly, scans performed over larger areas must neces-
sarily incorporate more surface features, meaning
Fig. 9. Use-wear produced by digging in heterogenous-
grained soil for 30 minutes viewed at different magnifications
Fig. 8. Polish produced by rubbing the bone specimen against
a piece of wrought iron for 30 minutes viewed at different
magnifications
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 3 13
that use-wear determinations will be more robust.
Yet, by increasing the observational area we also
increase the opportunity for the inclusion of tapho-
nomic alterations. Texture analysis is not yet at the
stage where it can reliably differentiate the varie-
ty of taphonomic alterations from use-wear ― but
hopefully it will get to this point.
For now, the visual observation of use-wear
features and polish quality remains the most wide-
ly used approach to functional analysis (e.g., An-
drefsky 2008; Sáez, Lerma 2015; Bejenaru 2018;
Bradfield et al. 2020). Irrespective of the non-stand-
ardised descriptive nomenclature inherent in this
approach, a visual comparison at different scales
of analysis of polishes produced by different con-
tact materials does not exist outside of individual
laboratory reference collections. Van Gijn (2014)
suggested that to mitigate concerns over use-wear
subjectivity we need larger samples, improved mi-
crograph quality and more experimental and eth-
nohistorical databases. This study in part attempts
to answer that call by making available this com-
parative collection of use-wear polish observed
at different scales of analysis, and highlights the
importance of basing functional interpretations,
whether they be visually derived or based on sur-
face texture measurements, at comparable and ap-
propriate scales of analysis.
Received 28.03.2022
Джастiн Бредфiлд
1 PhD, доцент, Палеодослідницький інститут Йоганнесбурзького університету, ORCID 0000-0002-6139-6227,
justinb@uj.ac.za.
ШКАЛА АНАЛIЗУ: ВИКОРИСТАННЯ ВIДПОВIДНОГО ЗБIЛЬШЕННЯ В ДОСЛIДЖЕННЯХ
СПРАЦЬОВАНОСТI МАТЕРIАЛУ
Більшість аналітиків, які вивчають спрацьованість артефактів, зазвичай використовують як малопотужну, так і високопо-
тужну мікроскопію при дослідженні поверхонь знарядь; при цьому «малопотужна» починається приблизно від 30x―50x,
а «високопотужна» сягає переважно 400x―500x збільшення. Потенціал інтерпретації мікроскопічних полірувань для
спрацьованості є фактором масштабу аналізу. Площа поверхні спостережень зменшується в оберненій пропорції до
збільшення. У цій роботі представлено результати полірування кістяних знарядь, які утворилися внаслідок фрикатив-
ного контакту з дев’ятьма різними матеріалами. Мікрозношувальне полірування розглядається з п’ятьма різними збіль-
шеннями. Показано, що збільшення 50x―200x або ділянки спостереження 0,4―2,0 мм2 є найбільш відповідною шкалою
аналізу полірувань, що зношуються незалежно від того, чи проводите ви морфологічні ідентифікації, чи покладаєтесь
на програмне забезпечення для аналізу текстури поверхні. Аналіз текстури поверхні пропагується як більш об’єктивна
міра зносу, однак аналітик все одно повинен обрати ділянки для сканування та збільшення чи площу поверхні. Роблячи
цей вибір, дослідник, по суті, повідомляє програмному забезпеченню, що він/вона вважає використанням-зношенням,
а що він/вона вважає тафономічними змінами. Величезний діапазон можливих тафономічних змін і різні масштаби, на
яких вони відбуваються, означають, що мова ще не йде про прямий процес віднімання значень шорсткості поверхні та-
фономічно змінених поверхонь зі знарядь для отримання їхніх чистих значень, які могли б указувати на їхню колишню
функцію. Ми ще не на тій стадії, коли аналіз текстури поверхні дозволяє зрозуміти багатофункціональні знаряддя краще,
ніж візуальне визначення. При 32-кратному збільшенні виробничі смуги залишаються чітко помітними на всіх поверхнях
кісток (за винятком випадків, коли залізо використовувалося як контактний матеріал), а мікроскопічні деталі полірованої
текстури не видно. Найбільш помітною втратою інформації при 500-кратному збільшенні є рельєф поверхні. Подано
цілий спектр зображень, які слугуватимуть як довідкова онлайн-колекція, щоб спеціалісти з вивчення спрацьованості
матеріалів могли уявити, як змінюється зовнішній вигляд полірування на різних рівнях збільшення.
Ключові слова: спрацьованість, мікроскопія, шкала аналізу, збільшення, аналіз текстури.
References
Akhmetgaleeva, N. 2017. Hide Polish of Worked Bone Tools from East European Late Upper Paleolithic Sites of Byki (Russia).
Quaternary International, 427, p. 225-229.
Andrefsky, W. 2008. Lithic Analysis, Use Wear. In: Pearseal, D. M. (ed.). Encyclopaedia of Archaeology. San Diego: Elsevier,
Academic Press.
Backwell, L., Parkington., A., Roberts, E., d’Errico, F., Huchet, J-B. 2012. Criteria for Identifying Bone Modification by Termites
in the Fossil Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 337, p. 72-87.
Backwell, L., d’Errico, F. 2001. Evidence of Termite Foraging by Swartkrans Early Hominids. Proceedings of the National
Academy of Sciences of the United States of America, 98, p. 1358-1363.
Bejenaru, L. 2018. Worked Bone and Archaeology: Proceedings of the 11th Meeting of the ICAZ Worked Bone Research Group
in Iasi 2016. Quaternary International, 472, Part A.
Bello, S., Vereniotou, E., Cornish, L., Parfitt, S. 2011. Dimensional Microscope Analysis of Bone and Tooth Surface
Modifications: Comparisons of Fossil Specimens and Replicas. Scanning, 33, p. 316-324.
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 314
Blasco, R., Rosell, J., Cuartera, F., Fernández Peris, J., Gopher, A., Barkai, R. 2013. Using Bones to Shape Stones: MIS 9 Bone
Retouchers at Both Edges of the Mediterranean Sea. PLoS ONE, 8, e76780.
Borel, A., Raphaël, D., Philippe, M., Thomas, I., Maxence, B., Julie, M. 2021. Optimization of Usewear Detection and
Characterization on Stone Tool Surfaces. Scientific Reports, 11, 24197. https://doi.org/10.1038/s41598-021-03663-4
Bradfield, J. 2014. Pointed Bone Tool Technology in Southern Africa: Results of Use-trace Analyses. Unpublished Doctoral
Thesis. University of Johannesburg.
Bradfield, J. 2015. Use-trace Analysis on Bone Tools: a Brief Overview of Four Methodological Approaches. South African
Archaeological Bulletin, 70, p. 3-14.
Bradfield, J., Antonites, A. 2018. Bone Scapula Hoes from the Middle Iron Age, Limpopo Province, South Africa. Quaternary
International, 472, p. 126-134.
Bradfield, J., Lombard, M., Reynard, J., Wurz, S. 2020. Further Evidence for Bow Hunting and its Implications More than 60
000 Years Ago: Results of a Use-trace Analysis of the Bone Point from Klasies River Main Site, South Africa. Quaternary
Science Reviews, 236, 106295. https://doi.org/10.1016/j.quascirev.2020.106295
Buc, N. 2010. Testing Functional Hypothesis of Late Holocene Bone Bipoints from the Lower Parana Wetlands (Argentina). In:
Legrand-Pineau, A., Sidéra, I. (eds.). Ancient and Modern Bone Artefacts from America to Russia: Cultural, Technological and
Functional Signature. British Archaeological Reports (B.A.R.), International Series 2136. Oxford: Archaeopress, p. 217-225.
Buc, N. 2011. Experimental Series and Use-wear in Bone Tools. Journal of Archaeological Science, 38, p. 546-557.
Buc, N., Loponte, D. 2007. Bone Tool Types and Microwear Patterns: Some Examples from the Pampa Region, South America.
In: Gates St-Pierre, C., Walker, R. (eds.). Bones as Tools: Current Methods and Interpretations in Worked Bone Studies.
British Archaeological Reports (B.A.R.) International Series 1622. Oxford: Archaeopress, p. 143-157.
Chabot, J., Dionne, M-M. Paquin, S. 2017. High Magnification Use-wear Analysis of Lithic Artefacts from Northeastern
America: Creation of an Experimental Database and Integration of Expedient Tools. Quaternary International, 427, p. 25-
34. https://doi.org/10.1016/j.quaint.2015.11.061
Choyke, A., Daróczi-Szabó, M. 2010. The Complete and Usable Tool: Some Life Histories of Prehistoric Bone Tools
in Hungary. In: A. Legrand-Pineau and I. Sidéra (eds), Ancient and Modern Bone Artefacts from America to Russia:
Cultural, Technological and Functional Signature. British Archaeological Reports (B. A. R.), International Series 2136.
Oxford: Archaeopress, p. 235-248.
Christensen, M. 1999. Technologie de l’ivoire au Paléolithique supérieur. Caractérisation physico- chimique du matériau et analyse fonc-
tionnelle des outils de transformation. British Archaeological Reports (B. A. R.), International Series 751. Oxford: Archaeopress.
Christadou, R. 2008. An Application of Micro-wear Analysis to Bone Experimentally Worked Using Bronze Tools. Journal of
Archaeological Science, 35, p. 733-751.
Cooper, J., Nugent, S. 2006. Tools on the Surface: Residue and Use-wear Analyses of Stone Artefacts from Camooweal,
Northwest Queensland. In: Haslam, M., Robertson, G., Crowther, A., Nugent, S., Kirkwood, L. (eds.). Archaeological
Science Under a Microscope: Studies in Residue and Ancient DNA Analysis in Honour of Thomas H. Loy. Terra Australis,
30. Canberra: ANU E-Press, p. 207-227
d’Errico, F. 1993. Criteria for Identifying Utilised Bone: the Case of the Cantabrian “Tensors”. Current Anthropology, 34,
p. 299-309.
d’Errico, F., Backwell, L. 2003. Possible Evidence of Bone Tool Shaping from the Early Hominid Site of Swartkrans, South
Africa. Journal of Archaeological Science, 30, p. 1559-1576.
d’Errico, F., Backwell, L. 2009. Assessing the Function of Early Hominin Bone Tools. Journal of Archaeological Science, 36,
p. 1764-1773.
Desmond, A., Barton, N., Bouzouggar, A., Douka, K., Fernandez, P., Humphrey, L., Morales, J., Buckley, M., Doyan, L. 2018.
ZooMS identification of Bone Tools from the North African Later Stone Age. Journal of Archaeological Science, 98,
p. 149-157. https://doi.org/10.1016/j.jas.2018.08.012
Donahue, R., Murphy, M., Robbins, L. 2002. Lithic Microwear Analysis of Middle Stone Age Artifacts from White Paintings
Rock Shelter, Botswana. Journal of Field Archaeology, 29, p. 155-163.
Dubreuil, L., Savage, D., Delgado-Raack, S., Plisson, H., Stephenson, B., de la Torre, I. 2015. Current Analytical Frameworks
for Studies of Use-wear on Ground Stone Tools. In: Marreiros, J., Bicho, N., Gibaja, J. (eds.). Use-Wear and Residue
Analysis in Archaeology, Manuals in Archaeological Method, Theory and Technique. Switzerland: Springer, p. 105-158.
Dumont, J. 1982. The Quantification of Microwear Traces: a New Use for Interferometry. World Archaeology, 14, p. 206-217.
Evans, A., Donahue, R. 2008. Laser Scanning Confocal Microscopy: a Potential Technique for the Study of Lithic Microwear.
Journal of Archaeological Science, 35, p. 2223-2230.
Evora, M. 2015. Use-wear Methodology on the Analysis of Osseous Industries. In: Marreiros, J., Bicho, N., Gibaja, J. (eds.).
Use-Wear and Residue Analysis in Archaeology, Manuals in Archaeological Method, Theory and Technique. Switzerland:
Springer, p. 159-170.
Falci, C., Cuisin, J., Delpuech, A., Van Gijn, A., Hofman, C. 2019. New Insights into Use-wear Development in Bodily
Ornaments Through the Study of Ethnographic Collections. Journal of Archaeological Method and Theory, 26, p. 755-
805. https://doi.org/10.1007/s10816-018-9389-8
Fernandez-Jalvo, Y. Andrews, P. 2016. Atlas of Taphonomic Identifications. London: Springer.
Fisher, J. 1995. Bone Surface Modifications in Zooarchaeology. Journal of Archaeological Method and Theory, 2, p. 7-68
Fullagar, R. 2006. Residues and Use-wear. In: Balme, J., Patterson, A. (eds.). Archaeology in Practice. Oxford: Blackwell,
p. 207-234.
Gates St-Pierre, C. 2007. Bone Awls of the St. Lawrence Iroquoians: a Microwear Analysis. In: Gates St-Pierre, C., Walker, R.
(eds.). Bones as Tools: Current Methods and Interpretations in Worked Bone Studies, British Archaeological Reports
(B. A. R.), International Series 1622, Oxford: Archaeopress, p. 107-118.
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 3 15
Gates St-Pierre, C., Walker, R. B. (eds.). 2007. Bones as Tools: Current Methods and Interpretations in Worked Bone Studies
BAR International Series 1622. Oxford: Archaeopress.
Gonzalez-Urquijo, J., Ibáñez -Estevez, J. 2003. The Quantification of Use-wear Polish Using Image Analysis: First Results.
Journal of Archaeological Science, 30, p. 481-489.
Grace, R. 1989. Interpreting the Function of Stone Tools: the Quantification and Computerisation of Microwear Analysis.
British Archaeological Reports (B. A. R.), International Series 474. Oxford: Archaeopress.
Grace, R. 1990. The Limitations and Applications of Use-wear Analysis. Proceedings of the International Conference on Lithic
Use-Wear Analysis, AUN, 14, p. 9-14.
Grace, R., Graham, I., Newcomer, M. 1985. The Quantification of Microwear Polishes. World Archaeology, 17, p. 112-120.
Griffitts, J. 1997. Replication and Analysis of Bone Tools. In: Hannus, L., Rossum, L., Winham, R. (eds.). Proceedings of the
1993 Bone Modification Conference Hot Springs, South Dakota, Archeology Laboratory Augustana College, Sioux Falls,
South Dakota. Occasional Publication, 1, p. 236-246.
Griffitts, J. 2001. Archaic Period Bone Tools from the Los Pozos Site in Southern Arizona. In: Choyke, A., Bartosiewicz, L.
(eds.). Crafting Bone: Skeletal Technologies through Time and Space, Proceedings of the 2nd meeting of the (ICAZ)
Worked Bone Research Group, Budapest. British Archaeological Reports (B. A. R.), International Series 937. Oxford:
Archaeopress, p. 185-195.
Griffitts, J., Bonsal, C. 2001. Experimental Determination of the Function of Antler and Bone ‘Bevel-ended Tools’ from Prehistoric
Shell Middens in Western Scotland. In: Choyke, A., Bartosiewicz, L. (eds.). Crafting Bone: Skeletal Technologies through
Time and Space. British Archaeological Reports (B. A. R.), International Series 937. Oxford: Archaeopress, p. 207-220.
Halett, E., Marean, C., Steele, T., Ivarez-Fernandez, E., Jacobs, Z., Niccolo, J., Aldeias, V., Scerri, E., Olszewski, D.,
Abdeljalil, M., Hajraoui, E., Dibble, H. 2021. A Worked Bone Assemblage from 120,000-90,000 Year Old Deposits at
Contrebandiers Cave, Atlantic Coast, Morocco. iScience, 24, 102988, p. 1-21. https://doi.org/10.1016/j.isci.2021.102988.
Hohenstein, U., Gargani, E., Bertolini, M. 2020. Use-wear Analysis of Bone and Antler Tools from Farneto (Bologna, Italy) and
Sa Osa (Oristano, Italy) Archaeological Sites. Journal of Archaeological Science: Reports, 32, p. 102386.
Holden, A., Harris, J. Timm, R. 2013. Paleoecological and Taphonomic Implications of Insect- Damaged Pleistocene
Vertebrate Remains from Rancho La Brea, Southern California. PLoS ONE, 8(7), e67119. http://doi.org/:10.1371/journal.
pone.0067119.
Ibáñez, J., Mazzucco, N. 2021. Quantitative Use-wear Analysis of Stone Tools: Measuring How the Intensity of Use Affects the
Identification of the Worked Material. PLoS ONE, 16(9), e0257266. https://doi.org/10.1371/journal.pone.0257266
Keeley, L. 1974. Technique and Methodology in Microwear Studies: a Critical Review. World Archaeology, 5, p. 323-336.
Keeley, L., Newcomer, M. 1977. Microwear Analysis of Experimental Flint Tools: a Test Case. Journal of Archaeological
Science, 4, p. 29-62.
Kimball, L. R., Kimball, J. F., Allen, P. E. 1995. Microwear Polishes as Viewed Through the Atomic Force Microscope. Lithic
Technology, 20, p. 6-28.
Knutsson, K. 1988. Making and Using Stone Tools: The Analysis of the Lithic Assemblages from Sites with Flint in Uästerbotten,
Northern Sweden. AUN II. Uppsala.
Legrand, A., Sidéra, I. 2007. Methods, Means and Results When Studying European Bone Industries. In: Gates St-Pierre, C.,
Walker, R. (eds.). Bones as Tools: Current Methods and Interpretations in Worked Bone Studies, British Archaeological
Reports (B. A. R.), International Series 1622, Oxford: Archaeopress, p. 67-78.
LeMoine, G. 1994. Use Wear on Bone and Antler Tools from the Mackenzie Delta, Northwest Territories. American Antiquity,
59, p. 316-334.
Li, Z., Shen, C. 2010. Use-wear Analysis Confirms the Use of Palaeolithic Bone Tools by the Lingjing Xuchang Early Human.
Chinese Science Bulletin, 55, p. 2282-2289.
Lombard, M., Wadley, L. 2007. The Morphological Identification of Micro-residues on Stone Tools Using light Microscopy:
Progress and Difficulties Based on Blind Tests. Journal of Archaeological Science, 34, p. 155-165.
Lyman, R. 1994. Vertebrate Taphonomy. Cambridge: Cambridge University Press.
Lyman, R. 2004. The Concept of Equifinality in Taphonomy. Journal of Taphonomy, 2, p. 15-26.
Malburg, M. 2019. Advanced Wear Analysis. Metrology and Quality News. [online]. Access mode: https://metrology.news/
advanced-wear-analysis. [accessed 13 Aril 2022].
Malzbender, T., Gelb, D. and Wolters, H. 2001. Polynomial Texture Maps. SIGGRAPH ‘01: Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques. August 2001, p. 519-528. https://doi.
org/10.1145/383259.383320.
Marreiros, J., Mazzucco, N., Gibaja, J., Bicho, N. 2015. Macro and Micro Evidences from the Past: the State of the Art
of Archeological Use-wear Studies. In: Marreiros, J., Bicho, N., Gibaja, J. (eds.). Use-Wear and Residue Analysis in
Archaeology, Manuals in Archaeological Method, Theory and Technique. Switzerland: Springer, p. 159-170.
Martisius, N., McPherron, S., Schulz-Kornas, E., Soressi, M., Steele, T. 2020. A Method for the Taphonomic Assessment of
Bone Tools Using 3D Surface Texture Analysis of Bone Microtopography. Archaeological and Anthropological Sciences,
12, p. 251-267. https://doi.org/10.1007/s12520-020-01195-y
Martisius, N. in press. Accessing the Ephemeral using Multiscale 3D Microscopy of Bone Microwear. Journal of Archaeological
Science: Reports, 103634.
Mateo-Lomba, P. Rivals, F., Blasco, R., Rosell, J. 2019. The Use of Bones as Retouchers at Unit III of Teixoneres Cave
(MIS 3; Moia, Barcelona, Spain). Journal of Archaeological Science: Reports, 27, 101980. https://doi.org/10.1016/j.
jasrep.2019.101980
Medina, M., Lopez, L., Buc, N. 2018. Bone Tool and Tuber Processing: a Multi-Proxy Approach at Boyo Paso 2, Argentina.
Antiquity, 92, p. 1040-1055. https://doi.org/10.15184/aqy.2018.93
ISSN 0235-3490 (Print), ISSN 2616-499X (Online). Археологія, 2022, № 316
Odell, G., Vereecken, F. 1980. Verifying the Reliability of Lithic Use-wear Assessments by ‘Blind Tests’: the Low-power
Approach. Journal of Field Archaeology, 7, p. 87-120.
Pante, M., de la Torre, I., d’Errico, F. Njau, J., Blumenschine, R. 2020. Bone Tools from Beds II-IV, Olduvai Gorge, Tanzania,
and Implications for the Origins and Evolution of Bone Technology. Journal of Human Evolution, 148, 102885. https://
doi.org/10.1016/j.jhevol.2020.102885
Plisson, H. 2018. Digital Photography in Use-wear Studies, from 2D to 3D. Virtual retrospect 2013 : actes du colloque de Pes-
sac (France), 27-29 novembre 2013, Nov 2013, Pessac, France. p.36-47.
Reynard, J. 2013. Trampling in Coastal Sites: an Experimental Study on the Effects of Shell on Bone in Coastal Sediment.
Quaternary International, 330, p. 156-170. https://doi.org/10.1016/j.quaint.2013.11.007.
Rots, V. 2005. Wear Traces and the Interpretation of Stone Tools. Journal of Field Archaeology, 30, p. 61-73.
Sáez, C., Lerma, I. 2015. Traceology on Metal. Use-wear Marks on Copper-based Tools and Weapons. In: Marreiros, J.,
Bicho, N., Gibaja, J. (eds.). Use-Wear and Residue Analysis in Archaeology, Manuals in Archaeological Method, Theory
and Technique. Switzerland: Springer, p. 171-188.
Scott, R., Ungar, P., Bergstrom, T., Brown, C., Grine, F., Teaford, M., Walker, A. 2005. Dental Microwear Texture Analysis
Shows Within Species Diet Variability in Fossil Hominins. Nature, 436, 693-695. https://doi.org/10.1038/nature03822.
Semenov, S. 1964. Prehistoric Technology. Bath: Adams and Dart.
Stammers, R., Caruana, M., Herries, A. 2018. The First Bone Tools from Kromdraai and Stone Tools from Drimolen, and
the Place of Bone Tools in the South African Earlier Stone Age. Quaternary International, 495, p. 87-101. https://doi.
org/10.1016/j.quaint.2018.04.026.
Stone, E. 2013. The Identification of Perishable Technology through Use-wear on Osseous Tools: Wear Patterns on Historic and
Contemporary Tools as a Standard for Identifying Raw Materials Worked in the Late Upper Palaeolithic. In: Choyke, A.,
O’Connor, S. (eds.). From these Bare Bones: Raw Materials and the Study of Worked Osseous Objects. Oxford: Oxbow
Books, p. 28-35.
Van Gijn, A. 2014. Science and Interpretation in Microwear Studies. Journal of Archaeological Science, 48, p. 166-169. https://
doi.org/10.1016/j.jas.2013.10.024.
Van Gijn, A. 2007. The Use of Bone and Antler Tools: Two Examples from the Late Mesolithic in the Dutch Coastal Zone.
In: Gates St-Pierre, C., Walker, R. (eds.). Bones as Tools: Current Methods and Interpretations in Worked Bone Studies.
British Archaeological Reports (B. A. R.), International Series 1622. Oxford: Archaeopress, p. 81-92.
Vaughan, P. 1985. Use-wear Analysis of Flaked Stone Tools. Arizona: University of Arizona Press.
Von Den Dries, M., Van Gijn, A. 1997. The Representivity of Experimental Use-wear Traces. In: Ramos-Millan, A., Bustillo, M.
(eds.). Siliceous Rocks and Culture. Monográfica Arte y arqueología, 42. Granada : Universidad de Granada, p. 499-513.
Zhilin, M. 2017. Mesolithic Bone Arrowheads from Ivanovskoye 7 (central Russia): Technology of the Manufacture and Use-
wear traces. Quaternary International, 427, p. 230-244. https://doi.org/10.1016/j.quaint.2015.09.095.
Zupancich, A., Mutri, G., Caricola, I., Carra, M., Radini, A., Cristiani, E. 2019. The Application of 3D Modeling and Spatial
Analysis in the Study of Groundstones Used in Wild Plants Processing. Archaeological and Anthropological Sciences, 11,
4801-4827. https://doi.org/10.1007/s12520-019-00824-5.
|