Про побудову керування, що глобально стабілізує рух одноланкового маніпулятора із нелінійно пружним зчленуванням в околі залежної від часу траєкторії

Отримано закон обертання електродвигуна, який забезпечує глобальну стабілізацію руху моделі одноланкового маніпулятора із пружним зчленуванням в околі заданої залежної від часу траєкторії. Пружність зчленування моделюється торсіонною пружиною, сила пружності якої вважається нелінійно залежною від зм...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Хорошун, А.С.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2023
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/202249
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Про побудову керування, що глобально стабілізує рух одноланкового маніпулятора із нелінійно пружним зчленуванням в околі залежної від часу траєкторії / А.С. Хорошун // Доповіді Національної академії наук України. — 2023. — № 6. — С. 33-39. — Бібліогр.: 7 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Отримано закон обертання електродвигуна, який забезпечує глобальну стабілізацію руху моделі одноланкового маніпулятора із пружним зчленуванням в околі заданої залежної від часу траєкторії. Пружність зчленування моделюється торсіонною пружиною, сила пружності якої вважається нелінійно залежною від зміщення. Цей факт унеможливлює застосування звичайного підходу (розрахованого на лінійність сили пружності) і значно ускладнює задачу побудови керування. Проте, застосовуючи техніку DSC (Dynamic Surface Control), отримано бажане керування. Специфічний вибір параметрів керування і констант фільтрів дозволяє уникнути зростання порядку допоміжної системи, а також явища значного ускладнення вигляду як допоміжної системи диференціальних рівнянь, так і закону керування, тобто явища “explosion of complexity”. Зниження порядку системи диференціальних рівнянь та спрощення її вигляду дозволили в даному випадку отримати в явному вигляді відповідну функцію Ляпунова та з її допомогою довести, що запропоноване керування вирішує поставлену задачу керування.