Оценивание состояния посевных площадей на основе классификации агрофитоценозов по данным спутниковых наблюдений
Розглянуто проблему класифікації агрофітоценозів за даними супутникового спостереження. Запропоновано процедуру попередньої обробки супутникових зображень для підвищення точності та швидкості експрес-аналізу стану сільськогосподарських угідь. Основна ідея алгоритму полягає в побудові моделей класифі...
Saved in:
| Date: | 2016 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2016
|
| Series: | Проблемы управления и информатики |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/208180 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Оценивание состояния посевных площадей на основе классификации агрофитоценозов по данным спутниковых наблюдений / Л.В. Подгородецкая, Ю.В. Пруцко, О.В. Семенив // Проблемы управления и информатики. — 2016. — № 3. — С. 152-159. — Бібліогр.: 16 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Розглянуто проблему класифікації агрофітоценозів за даними супутникового спостереження. Запропоновано процедуру попередньої обробки супутникових зображень для підвищення точності та швидкості експрес-аналізу стану сільськогосподарських угідь. Основна ідея алгоритму полягає в побудові моделей класифікації знімків агрофітоценозів на основі використання методу статистичного навчання. Наведено результати тестування алгоритму, проведено комп'ютерне моделювання оптимальних параметрів моделі для забезпечення високої точності та узагальнюючого статистичного показника. Попередні результати класифікації супутникових знімків сільськогосподарських угідь продемонстрували, що застосування вищезгаданого методу дозволяє значно спростити процес експрес-аналізу стану агрофітоценозів, оперативно та достовірно визначати площі посівних, підвищити швидкість обробки знімків, при цьому зберігається висока точність класифікації (понад 70 %) і коефіцієнт регулярності при різних вхідних даних. |
|---|