Пряма та обернена задачі томографії тензорного поля у кусково-однорідній смузі

Розглядаються пряма та обернена задачі визначення двовимірного напружено-деформованого стану в кусково-однорідній смузі, обумовленого стрибками переміщень на поверхні контакту різнорідних частин. В оберненій задачі стрибки переміщень апріорі невідомі, натомість задані лінійні інтеграли від шуканих к...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Чекурін, В., Кравчишин, О.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2005
Назва видання:Фізико-математичне моделювання та інформаційні технології
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/20870
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Пряма та обернена задачі томографії тензорного поля у кусково-однорідній смузі / В. Чекурін, О. Кравчишин // Фіз.-мат. моделювання та інформ. технології. — 2005. — Вип. 1. — С. 104-115. — Бібліогр.: 10 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглядаються пряма та обернена задачі визначення двовимірного напружено-деформованого стану в кусково-однорідній смузі, обумовленого стрибками переміщень на поверхні контакту різнорідних частин. В оберненій задачі стрибки переміщень апріорі невідомі, натомість задані лінійні інтеграли від шуканих компонент напружень вздовж деякої множини напрямків. Значення цих інтегралів можна визначити на основі даних акустичних вимірювань. Реалізовано метод розв’язування задач, який базується на розвиненні шуканих розв’язків за повною системою функцій, що задовольняють рівняння теорії пружності в об’ємі тіла й умови ненавантаженості сторін смуги. Коефіцієнти розвинень знаходяться з умови мінімуму функціоналів, які визначають середньо квадратичні відхилення розв’язку на межі півсмуг від заданих умов контакту (пряма задача) або від усіх заданих значень лінійних інтегралів (обернена задача).