Математична модель деформування пружного півпростору за дії нормального навантаження на його границі

Припущення про рівність нулю дотичних напружень на границі пружного півпростору при її гладкому нормальному навантаженні зумовлює парадокс взаємопроникнення точок матеріального континууму, якщо об’ємна деформація |Θ|>0 . При цьому з’ясовано, що для уникнення цієї фізичної некоректності досить над...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Галазюк, В., Сулим, Ґ.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2006
Назва видання:Фізико-математичне моделювання та інформаційні технології
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/20883
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Математична модель деформування пружного півпростору за дії нормального навантаження на його границі / В. Галазюк, Г. Сулим // Фіз.-мат. моделювання та інформ. технології. — 2006. — Вип. 3. — С. 29-41. — Бібліогр.: 4 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-20883
record_format dspace
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
description Припущення про рівність нулю дотичних напружень на границі пружного півпростору при її гладкому нормальному навантаженні зумовлює парадокс взаємопроникнення точок матеріального континууму, якщо об’ємна деформація |Θ|>0 . При цьому з’ясовано, що для уникнення цієї фізичної некоректності досить наділити границю певними реологічними властивостями, які уможливлюють регулювання її вертикальних переміщень розподілом на ній за певним законом дотичних напружень. Доведено, що завжди існує такий закон розподілу дотичних напружень, за якого вертикальні переміщення границі є нульовими за довільного нормального навантаження. Ця ідея виявилась слушною у задачах зі змішаними крайовими умовами, оскільки дала можливість виконати додаткову фізичну умову неперервності компонент вектора Ω=0,5 rot ū на лінії поділу крайових умов і цим забезпечити існування фізично коректного розв’язку, який узгоджується з обмеженнями лінійної моделі твердого деформівного тіла. Якщо зовні області навантаження вимагати рівності нулю дотичних напружень, то на межі області навантаження вони стають сингулярними з кореневою особливістю, так як і компоненти вектора Ω. При цьому виникає парадокс взаємопроникнення внаслідок розриву кутів повороту нормальних елементів навколо лінії поділу крайових умов.
format Article
author Галазюк, В.
Сулим, Ґ.
spellingShingle Галазюк, В.
Сулим, Ґ.
Математична модель деформування пружного півпростору за дії нормального навантаження на його границі
Фізико-математичне моделювання та інформаційні технології
author_facet Галазюк, В.
Сулим, Ґ.
author_sort Галазюк, В.
title Математична модель деформування пружного півпростору за дії нормального навантаження на його границі
title_short Математична модель деформування пружного півпростору за дії нормального навантаження на його границі
title_full Математична модель деформування пружного півпростору за дії нормального навантаження на його границі
title_fullStr Математична модель деформування пружного півпростору за дії нормального навантаження на його границі
title_full_unstemmed Математична модель деформування пружного півпростору за дії нормального навантаження на його границі
title_sort математична модель деформування пружного півпростору за дії нормального навантаження на його границі
publisher Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/20883
citation_txt Математична модель деформування пружного півпростору за дії нормального навантаження на його границі / В. Галазюк, Г. Сулим // Фіз.-мат. моделювання та інформ. технології. — 2006. — Вип. 3. — С. 29-41. — Бібліогр.: 4 назв. — укр.
series Фізико-математичне моделювання та інформаційні технології
work_keys_str_mv AT galazûkv matematičnamodelʹdeformuvannâpružnogopívprostoruzadíínormalʹnogonavantažennânajogogranicí
AT sulimg matematičnamodelʹdeformuvannâpružnogopívprostoruzadíínormalʹnogonavantažennânajogogranicí
first_indexed 2023-10-18T17:08:19Z
last_indexed 2023-10-18T17:08:19Z
_version_ 1796140771295887360
spelling irk-123456789-208832011-06-10T12:04:52Z Математична модель деформування пружного півпростору за дії нормального навантаження на його границі Галазюк, В. Сулим, Ґ. Припущення про рівність нулю дотичних напружень на границі пружного півпростору при її гладкому нормальному навантаженні зумовлює парадокс взаємопроникнення точок матеріального континууму, якщо об’ємна деформація |Θ|>0 . При цьому з’ясовано, що для уникнення цієї фізичної некоректності досить наділити границю певними реологічними властивостями, які уможливлюють регулювання її вертикальних переміщень розподілом на ній за певним законом дотичних напружень. Доведено, що завжди існує такий закон розподілу дотичних напружень, за якого вертикальні переміщення границі є нульовими за довільного нормального навантаження. Ця ідея виявилась слушною у задачах зі змішаними крайовими умовами, оскільки дала можливість виконати додаткову фізичну умову неперервності компонент вектора Ω=0,5 rot ū на лінії поділу крайових умов і цим забезпечити існування фізично коректного розв’язку, який узгоджується з обмеженнями лінійної моделі твердого деформівного тіла. Якщо зовні області навантаження вимагати рівності нулю дотичних напружень, то на межі області навантаження вони стають сингулярними з кореневою особливістю, так як і компоненти вектора Ω. При цьому виникає парадокс взаємопроникнення внаслідок розриву кутів повороту нормальних елементів навколо лінії поділу крайових умов. The assumption on vanishing of the tangential stresses on the boundary of the elastic half space under its smooth normal load causes a paradox of infiltration of points of material continuum whenever the dilatational strain |Θ|>0 . We demonstrate that, in order to avoid this physical ill-posedness, it is sufficient to assume that the boundary of the solid satisfies some flow properties that allow us to regulate its vertical displacements by means of distribution of tangential stresses on it, with respect to a certain law. It is proved that there always exists a distribution law such that the vertical displacements of the boundary are equal to zero under arbitrary normal load. This idea turned out to be meaningful in the problems with mixed boundary conditions, because it made possible to fulfill an additional physical condition of continuity of components of the vector Ω=0,5 rot ū on the separation curve of boundary conditions and therefore to ensure existence of physically correct solution that agrees with restrictions of linear model of solid deformable body. If we require that the tangential stresses vanish outside the load domain, then, on the boundary of the load domain, they became singular with kernel singularity, as well as components of the vector Ω. Here, a paradox of infiltration occurs, because of discontinuity of rotation angles of the normal elements around the separation curve of boundary conditions. Предположение о равенстве нулю касательных напряжений на границе упругого полупространства при ее гладкой нормальной нагрузке предопределяет парадокс взаимопроникновения точек материального континуума, если объемная деформация |Θ|>0 . Показано, что для избегания этой физической некорректности достаточно предположить, что граница тела обладает реологическими свойствами, которые позволяют регулировать ее вертикальные перемещения распределением на ней по определенному закону касательных напряжений. Доказано, что всегда существует такой закон распределения касательных напряжений, который делает вертикальные перемещения границы нулевыми при произвольной нормальной нагрузке. Эта идея оказалась состоятельной в задачах со смешанными краевыми условиями, поскольку дала возможность выполнить дополнительное физическое требование непрерывности компонент вектора Ω=0,5 rot ū на линии раздела краевых условий и этим обеспечить существование физически корректного решения, которое согласовано с ограничениями линейной модели деформируемого твердого тела. Если вне области нагрузки потребовать равенства нулю касательных напряжений, то на границе области нагрузки они становятся сингулярными с корневой особенностью так же, как и компоненты вектора Ω. При этом имеет место парадокс взаимопроникновения вследствие разрыва углов поворота нормальных элементов вокруг линии раздела краевых условий. 2006 Article Математична модель деформування пружного півпростору за дії нормального навантаження на його границі / В. Галазюк, Г. Сулим // Фіз.-мат. моделювання та інформ. технології. — 2006. — Вип. 3. — С. 29-41. — Бібліогр.: 4 назв. — укр. 1816-1545 http://dspace.nbuv.gov.ua/handle/123456789/20883 539.3 uk Фізико-математичне моделювання та інформаційні технології Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України