Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів

У роботі на основі варіаційного підходу побудовано математичну модель нестаціонарного процесу теплоперенесення у середовищах з тонкими покриттями та включеннями. Для врахування малих товщин окремих шарів використано гетерогенний підхід, який передбачає пониження вимірності ключових рівнянь математич...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Дяконюк, Л., Савула, Я.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2005
Назва видання:Фізико-математичне моделювання та інформаційні технології
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/20962
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів / Л. Дяконюк, Я. Савула // Фіз.-мат. моделювання та інформ. технології. — 2005. — Вип. 1. — С. 59-68. — Бібліогр.: 5 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-20962
record_format dspace
spelling irk-123456789-209622011-06-14T12:11:01Z Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів Дяконюк, Л. Савула, Я. У роботі на основі варіаційного підходу побудовано математичну модель нестаціонарного процесу теплоперенесення у середовищах з тонкими покриттями та включеннями. Для врахування малих товщин окремих шарів використано гетерогенний підхід, який передбачає пониження вимірності ключових рівнянь математичної моделі в областях тонких включень. Сформульовані варіаційна задача та теорема про існування та єдиність її розв’язку. Розроблена числова схема дослідження описаних задач, яка базується на напіваналітичному методі скінченних елементів для дискретизації варіаційної задачі за просторовими змінними та різницевою схемою Кранка-Ніколсона для дискретизації за часом. Сформульовані теореми про існування, єдиність та швидкість збіжності числового розв’язку. Наведено приклад стаціонарного процесу в тришаровій параболічній області. In present work the mathematical model of non-stationary heat transfer in environments with thin coverings and inclusions is constructed on the basis of the variational approach. For modeling of small thickness of separate layers the heterogeneous approach is used which provides dimensional reduction of key equations of the mathematical model in the regions of thin inclusions.The numerical method for the above-mentioned class of problems based on semianalitical Finite Element Method for the space-variable discretization and Finite Difference Method for time discretization, has been developed. The theorems of existence, uniqueness and speed of convergence of the numerical decision are formulated.The example of research of stationary process of heat transfer in a parabolic area with three layers is presented. В работе на основании вариационного похода построена математическая модель нестационарного процесса теплопереноса в средах с тонкими покрытиями и включениями. Для учета малых толщин отдельных слоев использован гетерогенный подход, который предусматривает снижения размерности уравнений математической модели в областях тонких включений. Сформулированы вариационная задача и теорема о существовании и единственности ее решения.Разработана числовая схема решения исследуемых задач, базирующаяся на полуаналитическом методе конечных элементов для дискретизации вариационной задачи по пространственных переменных и разностной схеме Кранка-Николсона для дискретизации по времени. Сформулированы теоремы о существовании, единственности и скорости сходимости числового решения. Приведен пример исследования стационарного процесса теплопроводности в трехслойной параболической области. 2005 Article Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів / Л. Дяконюк, Я. Савула // Фіз.-мат. моделювання та інформ. технології. — 2005. — Вип. 1. — С. 59-68. — Бібліогр.: 5 назв. — укр. 1816-1545 http://dspace.nbuv.gov.ua/handle/123456789/20962 517.958:519.6 uk Фізико-математичне моделювання та інформаційні технології Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
description У роботі на основі варіаційного підходу побудовано математичну модель нестаціонарного процесу теплоперенесення у середовищах з тонкими покриттями та включеннями. Для врахування малих товщин окремих шарів використано гетерогенний підхід, який передбачає пониження вимірності ключових рівнянь математичної моделі в областях тонких включень. Сформульовані варіаційна задача та теорема про існування та єдиність її розв’язку. Розроблена числова схема дослідження описаних задач, яка базується на напіваналітичному методі скінченних елементів для дискретизації варіаційної задачі за просторовими змінними та різницевою схемою Кранка-Ніколсона для дискретизації за часом. Сформульовані теореми про існування, єдиність та швидкість збіжності числового розв’язку. Наведено приклад стаціонарного процесу в тришаровій параболічній області.
format Article
author Дяконюк, Л.
Савула, Я.
spellingShingle Дяконюк, Л.
Савула, Я.
Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів
Фізико-математичне моделювання та інформаційні технології
author_facet Дяконюк, Л.
Савула, Я.
author_sort Дяконюк, Л.
title Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів
title_short Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів
title_full Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів
title_fullStr Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів
title_full_unstemmed Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів
title_sort гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів
publisher Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/20962
citation_txt Гетерогенний підхід до моделювання процесу теплоперенесення в багатошарових конструкціях із врахуванням малих товщин окремих шарів / Л. Дяконюк, Я. Савула // Фіз.-мат. моделювання та інформ. технології. — 2005. — Вип. 1. — С. 59-68. — Бібліогр.: 5 назв. — укр.
series Фізико-математичне моделювання та інформаційні технології
work_keys_str_mv AT dâkonûkl geterogennijpídhíddomodelûvannâprocesuteploperenesennâvbagatošarovihkonstrukcíâhízvrahuvannâmmalihtovŝinokremihšarív
AT savulaâ geterogennijpídhíddomodelûvannâprocesuteploperenesennâvbagatošarovihkonstrukcíâhízvrahuvannâmmalihtovŝinokremihšarív
first_indexed 2023-10-18T17:08:08Z
last_indexed 2023-10-18T17:08:08Z
_version_ 1796140763552153600