Моделювання взаємодії тіл з урахуванням поверхневого натягу рідини у міжконтактному просвіті
Запропоновано модель контакту пружного півпростору з жорсткою основою, що має плитку поверхневу виїмку, за наявності нестисливої рідини на крайніх ділянках міжповерхневого просвіту й ідеального газу в центральній його частині. Поверхневий натяг рідини, яка змочує поверхні тіл, зумовлює перепад тискі...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
2007
|
Назва видання: | Фізико-математичне моделювання та інформаційні технології |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/21104 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Моделювання взаємодії тіл з урахуванням поверхневого натягу рідини у міжконтактному просвіті / Б. Слободян, Р. Мартиняк // Фіз.-мат. моделювання та інформ. технології. — 2007. — Вип. 6. — С. 19-29. — Бібліогр.: 24 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Запропоновано модель контакту пружного півпростору з жорсткою основою, що має плитку поверхневу виїмку, за наявності нестисливої рідини на крайніх ділянках міжповерхневого просвіту й ідеального газу в центральній його частині. Поверхневий натяг рідини, яка змочує поверхні тіл, зумовлює перепад тисків у рідині та газі, що враховано формулою Лапласа. Зв’язок між тиском газу та його об’ємом описано рівнянням стану Клапейрона-Менделєєва. Сформульована на цій основі плоска контактна задача для пружного півпростору є істотно нелінійною, оскільки тиски газу та рідини, а також довжина рідинних ділянок заздалегідь невідомі та залежать від прикладеного навантаження. З використанням методу функцій міжконтактних зазорів задачу зведено до системи чотирьох рівнянь — сингулярного інтегрального відносно функції висоти просвіту та трьох трансцендентних стосовно тиску газу, висоти та координати меніска. Запропоновано аналітико-числову процедуру розв’язування цих рівнянь. Проаналізовано залежності висоти меніска, довжини рідинної ділянки та тиску в складових заповнювача від величини прикладеного навантаження, кількості рідини у просвіті та її поверхневого натягу. |
---|