Рівномірне наближення з точним відтворенням значень функції та її похідних у заданих точках

Розглянуто задачу найкращої рівномірної (чебишовської) апроксимації дискретної функції з точним відтворенням її значень і значень її похідних у заданих точках. Досліджено властивості такої рівномірної апроксимації многочленом і встановлено необхідні та достатні умови її існування. Запропоновано тако...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Малачівський, П.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2007
Назва видання:Фізико-математичне моделювання та інформаційні технології
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/21116
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Рівномірне наближення з точним відтворенням значень функції та її похідних у заданих точках / П. Малачівський // Фіз.-мат. моделювання та інформ. технології. — 2007. — Вип. 5. — С. 119-126. — Бібліогр.: 12 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглянуто задачу найкращої рівномірної (чебишовської) апроксимації дискретної функції з точним відтворенням її значень і значень її похідних у заданих точках. Досліджено властивості такої рівномірної апроксимації многочленом і встановлено необхідні та достатні умови її існування. Запропоновано також алгоритм для визначення параметрів апроксимації за схемою Ремеза з уточненням точок альтернанса за модифікованим алгоритмом Валле-Пуссена.