Неперервна та гладка мінімаксна сплайн-апроксимація експоненційним виразом
Розглянуто властивості мінімаксного (чебишовського, рівномірного) наближення з точним відтворенням значень функції та її похідної сумою многочлена й експоненти з заданим показником степеня. Встановлено необхідні та достатні умови існування такого мінімаксного наближення. Описано алгоритм побудови не...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України
2007
|
Назва видання: | Фізико-математичне моделювання та інформаційні технології |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/21121 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Неперервна та гладка мінімаксна сплайн-апроксимація експоненційним виразом / В. Адруник, П. Малачівський // Фіз.-мат. моделювання та інформ. технології. — 2007. — Вип. 5. — С. 85-97. — Бібліогр.: 10 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Розглянуто властивості мінімаксного (чебишовського, рівномірного) наближення з точним відтворенням значень функції та її похідної сумою многочлена й експоненти з заданим показником степеня. Встановлено необхідні та достатні умови існування такого мінімаксного наближення. Описано алгоритм побудови неперервного та гладкого мінімаксного сплайн-наближення експоненційним виразом із заданою похибкою. Наведено приклад застосування такого сплайн-наближення для опису низькотемпературної характеристики термодіодного сенсора. Проведено порівняння значень чутливості сенсора та похідної отриманого сплайна. |
---|