2025-02-23T23:11:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-22242%22&qt=morelikethis&rows=5
2025-02-23T23:11:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-22242%22&qt=morelikethis&rows=5
2025-02-23T23:11:34-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T23:11:34-05:00 DEBUG: Deserialized SOLR response

Моделювання дискретно- континуальних систем. Основи концепції квазіпохідних

У статті з’ясовано доцільність введення поняття квазіпохідних як ефективного апарату дослідження прикладних задач, що зводяться до розв’язування, так званих, квазідиференціальних рівнянь. Такі рівняння виникають під час дослідження реальних фізичних процесів, виводяться на основі законів збереження...

Full description

Saved in:
Bibliographic Details
Main Authors: Тацій, Р., Стасюк, М., Мазуренко, В.
Format: Article
Language:Ukrainian
Published: Центр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я.С. Підстригача НАН України 2009
Series:Фізико-математичне моделювання та інформаційні технології
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/22242
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:У статті з’ясовано доцільність введення поняття квазіпохідних як ефективного апарату дослідження прикладних задач, що зводяться до розв’язування, так званих, квазідиференціальних рівнянь. Такі рівняння виникають під час дослідження реальних фізичних процесів, виводяться на основі законів збереження та зображуються в дивергентній формі. Основні етапи розвитку концепції квазіпохідних наведено в хронологічному порядку від кінця 30-х років минулого століття до сьогодення. Новий поштовх розвитку теорії квазідиференціальних рівнянь надано авторами. Основою цього було створення лінійної теорії скалярних і векторних квазідиференціальних рівнянь з узагальненими функціями в коефіцієнтах і правих частинах, які за допомогою певним чином введених квазіпохідних зводяться до коректних систем диференціальних рівнянь із мірами. Це дало можливість розвинути такі новітні напрямки досліджень, як спектральна теорія узагальнених самоспряжених і несамоспряжених задач, теорія стійкості, наближені методи тощо. За браком місця основні результати таких досліджень наведені у статті без доведень, проте, з посиланнями на відповідні публікації.