Учет симметрий при исследовании устойчивости
Приводится теорема, которая дает возможность обнаружить неустойчивость нулевого решения системы дифференциальных уравнений, опираясь на группу симметрий и на одно частное решение, определенное на конечном интервале независимой переменной t, принадлежащей [0, t1]. Предполагается, что решение при 1 =...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Механика твердого тела |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/27943 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Учет симметрий при исследовании устойчивости / С.А. Кутепов, Г.Н. Яковенко // Механика твердого тела: Межвед. сб. науч. тр. — 2007. — Вип 37. — С. 136-144. — Бібліогр.: 5 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Приводится теорема, которая дает возможность обнаружить неустойчивость нулевого решения системы дифференциальных уравнений, опираясь на группу симметрий и на одно частное решение, определенное на конечном интервале независимой переменной t, принадлежащей [0, t1]. Предполагается, что решение при 1 = t1 находится за пределами ε-окрестности. Группа симметрий “тиражирует” исходное решение, создавая новые частные решения той же системы, определенные на интервалах t, принадлежащих [0, t1]. У новых решений положения при t = 0 приближаются к началу координат, а положения при t = t1 остаются за пределами ε-окрестности. В качестве приложений теоремы рассмотрены вопросы устойчивости положений равновесия механических систем, в частности, твердого тела с неподвижной точкой. |
---|