Spectral properties of non-homogeneous Timoshenko beam and its controllability

Controllability of slowly rotating non-homogeneous beam clamped to a disc is considered. It is assumed that at the beginning the beam remains at the position of rest and it is supposed to rotate by the given angle and achieve desired position. The rotor of propelling engine is in the middle of the d...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Sklyar, G.M., Szkibiel, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Назва видання:Механика твердого тела
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/27947
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectral properties of non-homogeneous Timoshenko beam and its controllability / G.M. Sklyar, G. Szkibiel // Механика твердого тела: Межвед. сб. науч. тр. — 2007. — Вип 37. — С. 175-183. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Controllability of slowly rotating non-homogeneous beam clamped to a disc is considered. It is assumed that at the beginning the beam remains at the position of rest and it is supposed to rotate by the given angle and achieve desired position. The rotor of propelling engine is in the middle of the disk. The movement is governed by the system of two di erential equations with non-constant coe cients: linear mass density, exural rigidity, rotational inertia and shear sti ness. To solve the problem of controllability, the spectrum of the operator generating the dynamics of the model is studied. Then the problem of controllability is reduced to the moment problem that is, in turn, solved with the use of the asymptotics of the spectrum and Ullrich Theorem.