Photon-induced spin transport in two-dimensional electron systems

We study spin-dependent transport in a two-dimensional electron gas subject to an external step-like potential V(x) and irradiated by an electromagnetic field (EF). In the absence of EF the electronic spectrum splits into spin sub-bands originating from the "Rashba" spin-orbit coupling....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Korostil, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України 2011
Назва видання:Збірник наукових праць Інституту проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/28550
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Photon-induced spin transport in two-dimensional electron systems / А. Korostil // Збірник наукових праць Інституту проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України. — К.: ІПМЕ ім. Г.Є. Пухова НАН України, 2011. — Вип. 59. — С. 53-57. — Бібліогр.: 11 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study spin-dependent transport in a two-dimensional electron gas subject to an external step-like potential V(x) and irradiated by an electromagnetic field (EF). In the absence of EF the electronic spectrum splits into spin sub-bands originating from the "Rashba" spin-orbit coupling. We show that the resonant interaction of propagating electrons with the component EF parallel to the barrier induces a nonequilibrium dynamic gap (2ΔR ) between the spin sub-bands. Existence of this gap results in coherent spin-flip processes that lead to a spin-polarized current and a large magnetoresistance, i.e. the spin valve effect. These effects may be used for controlling spin transport in semiconducting nanostructures, e.g. spin transistors, spin-blockade devices etc., by variation of the intensity S and frequency ω of the external radiation.