Двучленный закон трения Б.В. Дерягина в скользящем контакте шероховатых упругих тел
Пропонується модель ковзного адгезійного контакту шершавих пружних тіл з двочленним законом тертя. Шершавість моделюється пружним нелінійним шаром Вінклера–Фусса, який може сприймати розтяг. Механічні властивості шару визначаються статистичними теоріями адгезії номінально плоских шершавих поверхонь....
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2010
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/30025 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Двучленный закон трения Б.В. Дерягина в скользящем контакте шероховатых упругих тел / Б.А. Галанов, И.К. Валеева, С.М. Иванов // Доп. НАН України. — 2010. — № 8. — С. 106-112. — Бібліогр.: 11 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Пропонується модель ковзного адгезійного контакту шершавих пружних тіл з двочленним законом тертя. Шершавість моделюється пружним нелінійним шаром Вінклера–Фусса, який може сприймати розтяг. Механічні властивості шару визначаються статистичними теоріями адгезії номінально плоских шершавих поверхонь. Контакт тіл, що ковзають, описується нелінійними граничними інтегральними рівняннями з немонотонними операторами, розв'язки яких визначають зменшення ефективної товщини шершавого шару, контактні напруження і область контакту. Для розв'язання нелінійних граничних інтегральних рівнянь пропонується метод послідовних наближень. |
---|