Canonical-dissipative limit cycle oscillators with a short-range interaction in phase space

We consider limit cycle oscillators in terms of canonical-dissipative systems that exhibit a short-range interaction in velocity and position space as described by the Dirac delta function. We derive analytical expressions for stationary distribution functions in phase space and energy space and pro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Mongkolsakulvong, S., Frank, T.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2010
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/32038
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Canonical-dissipative limit cycle oscillators with a short-range interaction in phase space / S. Mongkolsakulvong, T.D. Frank // Condensed Matter Physics. — 2010. — Т. 13, № 1. — С. 13001: 1-18. — Бібліогр.: 49 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider limit cycle oscillators in terms of canonical-dissipative systems that exhibit a short-range interaction in velocity and position space as described by the Dirac delta function. We derive analytical expressions for stationary distribution functions in phase space and energy space and propose a numerical simulation scheme for the simulation of the many body system as well. We show that the short-range interaction squeezes or stretches energy distribution functions depending on whether the interaction can be regarded as attractive or repulsive. In addition to the interaction effect, we show that energy distribution functions become narrower when limit cycle attractors become stronger. Finally, energy distributions become broader when the pumping energy is increased. The latter effect however disappears in the high energy domain.