On the critical behaviour of two-dimensional liquid crystals

The Lebwohl-Lasher (LL) model is the traditional model used to describe the nematic-isotropic transition of real liquid crystals. In this paper, we develop a numerical study of the temperature behaviour and of finite-size scaling of the two-dimensional (2D) LL-model. We discuss two possible scenario...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Fariñas-Sánchez, A.l., Botet, R., Berche, B., Paredes, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2010
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/32043
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the critical behaviour of two-dimensional liquid crystals / A.l. Fariñas-Sánchez, R. Botet, B. Berche, R. Paredes // Condensed Matter Physics. — 2010. — Т. 13, № 1. — С. 13601: 1-17. — Бібліогр.: 49 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The Lebwohl-Lasher (LL) model is the traditional model used to describe the nematic-isotropic transition of real liquid crystals. In this paper, we develop a numerical study of the temperature behaviour and of finite-size scaling of the two-dimensional (2D) LL-model. We discuss two possible scenarios. In the first one, the 2D LL-model presents a phase transition similar to the topological transition appearing in the 2D XY-model. In the second one, the 2D LL-model does not exhibit any critical transition, but its low temperature behaviour is rather characterized by a crossover from a disordered phase to an ordered phase at zero temperature. We realize and discuss various comparisons with the 2D XY-model and the 2D Heisenberg model. Having added finite-size scaling behaviour of the order parameter and conformal mapping of order parameter profile to previous studies, we analyze the critical scaling of the probability distribution function, hyperscaling relations and stiffness order parameter and conclude that the second scenario (no critical transition) is the most plausible.