The second critical density and anisotropic generalised condensation

In this letter we discuss the relevance of the 3D Perfect Bose gas (PBG) condensation in extremely elongated vessels for the study of anisotropic condensate coherence and the "quasi-condensate". To this end we analyze the case of exponentially anisotropic (van den Berg) boxes, when there a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Beau, M., Zagrebnov, V.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2010
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/32089
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The second critical density and anisotropic generalised condensation / M. Beau, V.A. Zagrebnov // Condensed Matter Physics. — 2010. — Т. 13, № 2. — С. 23003: 1-10. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-32089
record_format dspace
spelling irk-123456789-320892012-04-09T12:14:35Z The second critical density and anisotropic generalised condensation Beau, M. Zagrebnov, V.A. In this letter we discuss the relevance of the 3D Perfect Bose gas (PBG) condensation in extremely elongated vessels for the study of anisotropic condensate coherence and the "quasi-condensate". To this end we analyze the case of exponentially anisotropic (van den Berg) boxes, when there are two critical densities ρc<ρm for a generalised Bose-Einstein Condensation (BEC). Here ρc is the standard critical density for the PBG. We consider three examples of anisotropic geometry: slabs, squared beams and "cigars" to demonstrate that the "quasi-condensate" which exists in domain ρc<ρ<ρm is in fact the van den Berg-Lewis-Pulé generalised condensation (vdBLP-GC) of the type III with no macroscopic occupation of any mode. We show that for the slab geometry the second critical density ρm is a threshold between quasi-two-dimensional (quasi-2D) condensate and the three dimensional (3D) regime when there is a coexistence of the "quasi-condensate" with the standard one-mode BEC. On the other hand, in the case of squared beams and "cigars" geometries, critical density ρm separates quasi-1D and 3D regimes. We calculate the value of the difference between ρc, ρm (and between corresponding critical temperatures Tm, Tc) to show that the observed space anisotropy of the condensate coherence can be described by a critical exponent γ(T) related to the anisotropic ODLRO. We compare our calculations with physical results for extremely elongated traps that manifest "quasi-condensate". 2010 Article The second critical density and anisotropic generalised condensation / M. Beau, V.A. Zagrebnov // Condensed Matter Physics. — 2010. — Т. 13, № 2. — С. 23003: 1-10. — Бібліогр.: 23 назв. — англ. 1607-324X PACS: 05.30.Jp, 03.75.Hh, 67.40.-w http://dspace.nbuv.gov.ua/handle/123456789/32089 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this letter we discuss the relevance of the 3D Perfect Bose gas (PBG) condensation in extremely elongated vessels for the study of anisotropic condensate coherence and the "quasi-condensate". To this end we analyze the case of exponentially anisotropic (van den Berg) boxes, when there are two critical densities ρc<ρm for a generalised Bose-Einstein Condensation (BEC). Here ρc is the standard critical density for the PBG. We consider three examples of anisotropic geometry: slabs, squared beams and "cigars" to demonstrate that the "quasi-condensate" which exists in domain ρc<ρ<ρm is in fact the van den Berg-Lewis-Pulé generalised condensation (vdBLP-GC) of the type III with no macroscopic occupation of any mode. We show that for the slab geometry the second critical density ρm is a threshold between quasi-two-dimensional (quasi-2D) condensate and the three dimensional (3D) regime when there is a coexistence of the "quasi-condensate" with the standard one-mode BEC. On the other hand, in the case of squared beams and "cigars" geometries, critical density ρm separates quasi-1D and 3D regimes. We calculate the value of the difference between ρc, ρm (and between corresponding critical temperatures Tm, Tc) to show that the observed space anisotropy of the condensate coherence can be described by a critical exponent γ(T) related to the anisotropic ODLRO. We compare our calculations with physical results for extremely elongated traps that manifest "quasi-condensate".
format Article
author Beau, M.
Zagrebnov, V.A.
spellingShingle Beau, M.
Zagrebnov, V.A.
The second critical density and anisotropic generalised condensation
Condensed Matter Physics
author_facet Beau, M.
Zagrebnov, V.A.
author_sort Beau, M.
title The second critical density and anisotropic generalised condensation
title_short The second critical density and anisotropic generalised condensation
title_full The second critical density and anisotropic generalised condensation
title_fullStr The second critical density and anisotropic generalised condensation
title_full_unstemmed The second critical density and anisotropic generalised condensation
title_sort second critical density and anisotropic generalised condensation
publisher Інститут фізики конденсованих систем НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/32089
citation_txt The second critical density and anisotropic generalised condensation / M. Beau, V.A. Zagrebnov // Condensed Matter Physics. — 2010. — Т. 13, № 2. — С. 23003: 1-10. — Бібліогр.: 23 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT beaum thesecondcriticaldensityandanisotropicgeneralisedcondensation
AT zagrebnovva thesecondcriticaldensityandanisotropicgeneralisedcondensation
AT beaum secondcriticaldensityandanisotropicgeneralisedcondensation
AT zagrebnovva secondcriticaldensityandanisotropicgeneralisedcondensation
first_indexed 2023-10-18T17:33:57Z
last_indexed 2023-10-18T17:33:57Z
_version_ 1796141882398474240