Statistical field theory for liquid vapor interface

A statistical field theory for an inhomogeneous liquid, a planar liquid/vapor interface, is devised from first principles. The grand canonical partition function is represented via a Hubbard-Stratonovitch transformation leading, close to the critical point, to the usual φ4 scalar field theory which...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Russier, V., Caillol, J.-M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2010
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/32093
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Statistical field theory for liquid vapor interface / V. Russier, J.-M. Caillol // Condensed Matter Physics. — 2010. — Т. 13, № 2. — С. 23602: 1-15. — Бібліогр.: 47 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-32093
record_format dspace
spelling irk-123456789-320932012-04-09T12:13:28Z Statistical field theory for liquid vapor interface Russier, V. Caillol, J.-M. A statistical field theory for an inhomogeneous liquid, a planar liquid/vapor interface, is devised from first principles. The grand canonical partition function is represented via a Hubbard-Stratonovitch transformation leading, close to the critical point, to the usual φ4 scalar field theory which is then rigorously considered at the one-loop level. When further simplified it yields the well-known capillary wave theory without any ad hoc phenomenological parameter. Internal coherence of the one-loop approximation is discussed and good overall qualitative agreement with recent numerical simulations is stressed. 2010 Article Statistical field theory for liquid vapor interface / V. Russier, J.-M. Caillol // Condensed Matter Physics. — 2010. — Т. 13, № 2. — С. 23602: 1-15. — Бібліогр.: 47 назв. — англ. 1607-324X PACS: 61.30.Hn, 64.70.F, 68.03.Cd http://dspace.nbuv.gov.ua/handle/123456789/32093 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A statistical field theory for an inhomogeneous liquid, a planar liquid/vapor interface, is devised from first principles. The grand canonical partition function is represented via a Hubbard-Stratonovitch transformation leading, close to the critical point, to the usual φ4 scalar field theory which is then rigorously considered at the one-loop level. When further simplified it yields the well-known capillary wave theory without any ad hoc phenomenological parameter. Internal coherence of the one-loop approximation is discussed and good overall qualitative agreement with recent numerical simulations is stressed.
format Article
author Russier, V.
Caillol, J.-M.
spellingShingle Russier, V.
Caillol, J.-M.
Statistical field theory for liquid vapor interface
Condensed Matter Physics
author_facet Russier, V.
Caillol, J.-M.
author_sort Russier, V.
title Statistical field theory for liquid vapor interface
title_short Statistical field theory for liquid vapor interface
title_full Statistical field theory for liquid vapor interface
title_fullStr Statistical field theory for liquid vapor interface
title_full_unstemmed Statistical field theory for liquid vapor interface
title_sort statistical field theory for liquid vapor interface
publisher Інститут фізики конденсованих систем НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/32093
citation_txt Statistical field theory for liquid vapor interface / V. Russier, J.-M. Caillol // Condensed Matter Physics. — 2010. — Т. 13, № 2. — С. 23602: 1-15. — Бібліогр.: 47 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT russierv statisticalfieldtheoryforliquidvaporinterface
AT cailloljm statisticalfieldtheoryforliquidvaporinterface
first_indexed 2023-10-18T17:33:58Z
last_indexed 2023-10-18T17:33:58Z
_version_ 1796141882822098944