Sound attenuation and anharmonic damping in solids with correlated disorder

We study via self-consistent Born approximation a model for sound waves in a disordered environment, in which the local fluctuations of the shear modulus G are spatially correlated with a certain correlation length ξ. The theory predicts an enhancement of the density of states over Debye's ω2 l...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Schirmacher, W., Tomaras, C., Schmid, B., Baldi, G., Viliani, G., Ruocco, G., Scopigno, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2010
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/32096
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Sound attenuation and anharmonic damping in solids with correlated disorder / W. Schirmacher, C. Tomaras, B. Schmid, G. Baldi, G. Viliani, G. Ruocco, T. Scopigno // Condensed Matter Physics. — 2010. — Т. 13, № 2. — С. 23606: 1-6. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We study via self-consistent Born approximation a model for sound waves in a disordered environment, in which the local fluctuations of the shear modulus G are spatially correlated with a certain correlation length ξ. The theory predicts an enhancement of the density of states over Debye's ω2 law (boson peak) whose intensity increases for increasing correlation length, and whose frequency position is shifted downwards as 1/ξ. Moreover, the predicted disorder-induced sound attenuation coefficient Γ(k) obeys a universal scaling law ξ Γ(k) = f(kξ) for a given variance of G. Finally, the inclusion of the lowest-order contribution to the anharmonic sound damping into the theory allows us to reconcile apparently contradictory recent experimental data in amorphous SiO2.