Quasiaverages, symmetry breaking and irreducible Green functions method

The development and applications of the method of quasiaverages to quantum statistical physics and to quantum solid state theory and, in particular, to quantum theory of magnetism, were considered. It was shown that the role of symmetry (and the breaking of symmetries) in combination with the degene...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Kuzemsky, A.L.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2010
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/32118
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quasiaverages, symmetry breaking and irreducible Green functions method / A.L. Kuzemsky // Condensed Matter Physics. — 2010. — Т. 13, № 4. — С. 43001:1-20. — Бібліогр.: 62 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The development and applications of the method of quasiaverages to quantum statistical physics and to quantum solid state theory and, in particular, to quantum theory of magnetism, were considered. It was shown that the role of symmetry (and the breaking of symmetries) in combination with the degeneracy of the system was reanalyzed and essentially clarified within the framework of the method of quasiaverages. The problem of finding the ferromagnetic, antiferromagnetic and superconducting “symmetry broken” solutions of the correlated lattice fermion models was discussed within the irreducible Green functions method. A unified scheme for the construction of generalized mean fields (elastic scattering corrections) and self-energy (inelastic scattering) in terms of the equations of motion and Dyson equation was generalized in order to include the “source fields”. This approach complements previous studies of microscopic theory of antiferromagnetism and clarifies the concepts of Neel sublattices for localized and itinerant antiferromagnetism and “spin-aligning fields” of correlated lattice fermions.