A generalized hydrodynamical Gurevich-Zybin equation of Riemann type and its Lax type integrability

This paper is devoted to the study of a hydrodynamical equation of Riemann type, generalizing the remarkable Gurevich–Zybin system. This multi-component non-homogenous hydrodynamic equation is characterized by the only characteristic flow velocity. The compatible bi-Hamiltonian structures and Lax ty...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Pavlov, M.V., Prykarpatsky, A.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2010
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/32119
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A generalized hydrodynamical Gurevich-Zybin equation of Riemann type and its Lax type integrability / M.V. Pavlov, A.K. Prykarpatsky // Condensed Matter Physics. — 2010. — Т. 13, № 4. — С. 43002:1-21. — Бібліогр.: 24 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper is devoted to the study of a hydrodynamical equation of Riemann type, generalizing the remarkable Gurevich–Zybin system. This multi-component non-homogenous hydrodynamic equation is characterized by the only characteristic flow velocity. The compatible bi-Hamiltonian structures and Lax type representations of the 3-and 4-component generalized Riemann type hydrodynamical system are analyzed. For the first time the obtained results augment the theory of integrability of hydrodynamic type systems, originally developed only for distinct characteristic velocities in homogenous case.