Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications

Principal experimental approaches based on tailored synthesis of oligoperoxide surfaceactive substances and their application for obtaining polymeric and hybrid nanoscale carriers possessing targeted functionality and biocompatibility are presented. Molecular design of novel linear, block and combli...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Zaichenko, O., Stoika, R., Mitina, N., Lutsik, M., Shevchuk, O., Lobaz, V., Boiko, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут біохімії ім. О. В. Палладіна НАН України 2008
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/3934
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications / O. Zaichenko, R. Stoika, N. Mitina, M. Lutsik, O. Shevchuk, V. Lobaz, N. Boiko, // Біотехнологія. — 2008. — Т. 1, № 1. — С. 86-99. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-3934
record_format dspace
spelling irk-123456789-39342013-02-13T02:10:40Z Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications Zaichenko, O. Stoika, R. Mitina, N. Lutsik, M. Shevchuk, O. Lobaz, V. Boiko, N. Експериментальні статті Principal experimental approaches based on tailored synthesis of oligoperoxide surfaceactive substances and their application for obtaining polymeric and hybrid nanoscale carriers possessing targeted functionality and biocompatibility are presented. Molecular design of novel linear, block and comblike oligoperoxide surfactants and derived coordinating complexes of transitional and rare earth metal cations is a convenient tool for synthesis of luminescent, magnetic and other functional nanocomposites with controlled size distribution, functionality, reactivity and biocompatibility. The methods developed provide combining the stage of formation of polymeric, metal and metaloxide nanoparticles with the stage of their surface irreversible modification by functional surfaceactive oligoperoxides capable of binding physiologically active substances. The availability of reactive ditertiary peroxide fragments provides a possibility for functionalization of developed nanoparticles that were applied for studying phagocytosis, surface markers of pathological cells, and targeted delivery of drugs and antimicrobial remedies. Розглянуто основні експериментальні підходи до цілеспрямованого синтезу поверхневоактивних олігопероксидних речовин і їх застосування з метою одержання полімерних і гібридних нанорозмірних носіїв, яким притаманна скерована функціональність та біосумісність. Конструювання нових лінійних, блокових та гребенеподібних олігопероксидних сурфактантів, а також їхніх похідних координаційних комплексів із катіонами перехідних та рідкоземельних металів є зручним інструментом для синтезу люмінесцентних, магнітних та інших функціональних нанокомпозитів із регульованим розподілом за розмірами, функціональністю, реактивністю та біосумісністю. Розроблені методи дозволяють поєднати стадію формування полімерних, металевих та металооксидних наночастинок зі стадією необоротної модифікації їхньої поверхні функціональними поверхнево<активними олігопероксидами, здатними зв’язувати фізіологічно активні речовини. Наявність реакційноздатних дитретинних пероксидних фрагментів уможливлює функціоналізацію створених наночастинок, що їх було застосовано для дослідження фагоцитозу як поверхневі маркери патологічних клітин, а також для спрямованого доставлення лікарських препаратів. Рассмотрены основные экспериментальные подходы к целенаправленному синтезу олигопероксидных поверхностноактивных веществ и их использованию для получения полимерных и гибридных наноразмерных носителей, обладающих заданной функциональностью и биосовместимостью. Конструирование новых линейных, блочных и гребеневидных олигопероксидных сурфактантов, а также их производных координационных комплексов с катионами переходных и редкоземельных металлов является удобным инструментом для синтеза люминесцентных, магнитных и других функциональных нанокомпозитов с регулируемым распределением по размеру, функциональности, реакционной способности и биосовместимости. Разработанные методы обеспечивают совмещение стадии формирования полимерных, металлических и металлооксидных наночастиц со стадией необратимой модификации их поверхности функциональными поверхностноактивными лигопероксидами, способными к связыванию физиологически активных веществ. Наличие реакционноспособных дитретичных пероксидных фрагментов обеспечивает возможность функционализации полученных наночастиц, которые использовались для изучения фагоцитоза как поверхностные маркеры патологических клеток, а также для целевой доставки лекарственных препаратов. 2008 Article Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications / O. Zaichenko, R. Stoika, N. Mitina, M. Lutsik, O. Shevchuk, V. Lobaz, N. Boiko, // Біотехнологія. — 2008. — Т. 1, № 1. — С. 86-99. — Бібліогр.: 18 назв. — англ. http://dspace.nbuv.gov.ua/handle/123456789/3934 541.64:541.182:541.183 en Інститут біохімії ім. О. В. Палладіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Експериментальні статті
Експериментальні статті
spellingShingle Експериментальні статті
Експериментальні статті
Zaichenko, O.
Stoika, R.
Mitina, N.
Lutsik, M.
Shevchuk, O.
Lobaz, V.
Boiko, N.
Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications
description Principal experimental approaches based on tailored synthesis of oligoperoxide surfaceactive substances and their application for obtaining polymeric and hybrid nanoscale carriers possessing targeted functionality and biocompatibility are presented. Molecular design of novel linear, block and comblike oligoperoxide surfactants and derived coordinating complexes of transitional and rare earth metal cations is a convenient tool for synthesis of luminescent, magnetic and other functional nanocomposites with controlled size distribution, functionality, reactivity and biocompatibility. The methods developed provide combining the stage of formation of polymeric, metal and metaloxide nanoparticles with the stage of their surface irreversible modification by functional surfaceactive oligoperoxides capable of binding physiologically active substances. The availability of reactive ditertiary peroxide fragments provides a possibility for functionalization of developed nanoparticles that were applied for studying phagocytosis, surface markers of pathological cells, and targeted delivery of drugs and antimicrobial remedies.
format Article
author Zaichenko, O.
Stoika, R.
Mitina, N.
Lutsik, M.
Shevchuk, O.
Lobaz, V.
Boiko, N.
author_facet Zaichenko, O.
Stoika, R.
Mitina, N.
Lutsik, M.
Shevchuk, O.
Lobaz, V.
Boiko, N.
author_sort Zaichenko, O.
title Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications
title_short Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications
title_full Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications
title_fullStr Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications
title_full_unstemmed Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications
title_sort novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications
publisher Інститут біохімії ім. О. В. Палладіна НАН України
publishDate 2008
topic_facet Експериментальні статті
url http://dspace.nbuv.gov.ua/handle/123456789/3934
citation_txt Novel functional nanoscale composites on the basis of oligoperoxide surfactants: synthesis and biomedical applications / O. Zaichenko, R. Stoika, N. Mitina, M. Lutsik, O. Shevchuk, V. Lobaz, N. Boiko, // Біотехнологія. — 2008. — Т. 1, № 1. — С. 86-99. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT zaichenkoo novelfunctionalnanoscalecompositesonthebasisofoligoperoxidesurfactantssynthesisandbiomedicalapplications
AT stoikar novelfunctionalnanoscalecompositesonthebasisofoligoperoxidesurfactantssynthesisandbiomedicalapplications
AT mitinan novelfunctionalnanoscalecompositesonthebasisofoligoperoxidesurfactantssynthesisandbiomedicalapplications
AT lutsikm novelfunctionalnanoscalecompositesonthebasisofoligoperoxidesurfactantssynthesisandbiomedicalapplications
AT shevchuko novelfunctionalnanoscalecompositesonthebasisofoligoperoxidesurfactantssynthesisandbiomedicalapplications
AT lobazv novelfunctionalnanoscalecompositesonthebasisofoligoperoxidesurfactantssynthesisandbiomedicalapplications
AT boikon novelfunctionalnanoscalecompositesonthebasisofoligoperoxidesurfactantssynthesisandbiomedicalapplications
first_indexed 2025-07-02T07:15:55Z
last_indexed 2025-07-02T07:15:55Z
_version_ 1836518532268949504
fulltext БІОТЕХНОЛОГІЯ, Т. 1, №1, 2008 86 The development of novel nanoparticles and nanocomposites with polymeric shell which provides their colloidal stability with biocompatibility, chemical targeted function< ality and reactivity as well as the methods of their synthesis are of a significant interest for the obtaining nanoscale carriers and labels of biomedical application [1–3]. A variety of syn< thetic technologies for the preparation of nanoparticles of biomedical application with narrowed size distribution and tailored func< tionality and reactivity are available [1, 2]. At the same time nanoparticle targeted irre< versible surface functionalization is one of the main problems of the particle synthesis and biomedical application. As it is referred in [4] «The ability to assemble nanostructures requires precise control of the particle’s sur< face chemistry, where molecules can be coated onto the surface to direct the assembly process. Strategies have been developed to readily permit the modification of a nanopar< ticle’s surface chemistry. In preparing for coatings, the surface of metallic nanoparticles is generally stabilized with a weak ligand that can be easily desorbed from the surface. For other types of nanoparticles where the surface coating with biomolecules may be more diffi< cult, extra processing steps are needed to cre< ate a surface with reactive functional groups (–COOH, –SH, or –NH2)». This can lead to novel approaches in treatment of cancer, AIDS and Alzheimer disease. The creation of theoretical and experimen< tal bases of the synthesis of novel surfactant oligoperoxides (SAP) and coordinative oligo< peroxide metal complexes (OMC) on the basis of linear, block and branched structures opens a possibility for obtaining new functional polymeric, inorganic and hybrid colloidal par< ticles [5, 6] by the techniques of sorption mod< ification or/and polymerization. Functional surface<active SAP and OMC are absorbed onto the surface of dispersed polymer and mineral fillers providing the localization of necessary quantity of hydrophobic or hydro< philic and peroxide<containing fragments. A brief review of principally universal approaches based on tailored synthesis and reactions of functional oligoperoxide surfac< tants developed in our laboratory for obtain< ing and application of functionally active Principal experimental approaches based on tailored synthesis of oligoperoxide surface<active substances and their application for obtaining polymeric and hybrid nanoscale carriers possessing targeted functionality and bio< compatibility are presented. Molecular design of novel linear, block and comb<like oligoperoxide surfactants and derived coordinating complexes of transitional and rare earth metal cations is a convenient tool for synthesis of lumi< nescent, magnetic and other functional nanocomposites with controlled size distribution, functionality, reactivity and biocompatibility. The methods developed provide combining the stage of formation of polymeric, metal and metal<oxide nanoparticles with the stage of their surface irreversible modification by functional surface<active oligoperoxides capable of binding physiologically active substances. The availability of reactive ditertiary peroxide fragments provides a possibility for functionalization of developed nanoparticles that were applied for studying phagocytosis, surface markers of pathological cells, and targeted delivery of drugs and antimicrobial remedies. УДК 541.64:541.182:541.183 NOVEL FUNCTIONAL NANOSCALE COMPOSITESNOVEL FUNCTIONAL NANOSCALE COMPOSITES ON THE BASIS OF OLIGOPEROXIDE ON THE BASIS OF OLIGOPEROXIDE SURFACTANTS:SURFACTANTS: SYNTHESIS AND BIOMEDICAL APPLICATIONSSYNTHESIS AND BIOMEDICAL APPLICATIONS Key words: oligoperoxide surfactants, metal complexes, radical emulsion polymerization, homogeneous nucleation, functional colloidal particles, «core<shell» polymerization, phagocytosis, drug delivery. O. Zaichenko1 R. Stoika2 1Lviv Polytechnic National University, Ukraine N. Mitina1 E$mail: zaichenk@polynet.lviv.ua M. Lutsik2 O. Shevchuk1 2Institute of Cell Biology of National Academy of Sciences of Ukraine, Lviv V. Lobaz1 N. Boiko2 Експериментальні статті 87 colloids and nanoparticles predominantly for biomedical application is the main goal of our work. Materials and methods Oligoperoxide surfactants (SAP) were syn< thesized on the basis of vinyl acetate (VA), maleic anhydride (MA), and 5<tert butylper< oxy<5<methyl<1<hexene<3<yne (VEP), styrene (St), methyl methacrylate (MMA), N<vinyl pyrrolidone (N<VP), butyl acrylate (BA), acrylic acid (AA). Polymerization was conduc< ted at 333K in ethyl acetate, using azobisiso< butyronitrile (AIBN) as initiator [5]. Surfac< tant oligoperoxide metal complexes (OMC) were obtained by interaction of functional SAP with copper cations in organic medium at room temperature [6, see also Fig. 1]. Used monomers were purified by double vacuum distillation. MA was purified by vacuum sub< limation and after purification its melting point was 325K (ref. [7]). The peroxide monomer VEP was purified by vacuum distil< lation (active oxygen content was 8.79%; calc. 8.75%). AIBN was purified by re<crystalliza< tion from ethanol. Other monomers and sol< vents (Merck) as well as metal salts were used. For biological studies nanoparticles of polystyrene and polybutyl<methacrylate structure were synthesized via water disper< sion polymerization initiated by OMC or by water dispersion copolymerization of styrene with surface<active monomer (SM). Ammo< nium persulfate (APS), AIBN, or functional oligoperoxide metal complex (OMC) were used as initiators. Besides, colored latexes were obtained by incorporation of specific dyes (MD) into particles. The following latexes were used in the study of phagocytosis: – НМ<20 series, polystyrene based polymer: • Copolymer styrene: SM 100:10 — APS; • Copolymer styrene: SM 100:10 — AIBN; • Copolymer styrene: SM 100:1 — AIBN; • Copolymer styrene: SM 100:1 — APS. – Latexes with incorporated dye: • Copolymer styrene: SM 100:10 + 10% MD, initiator — APS (Viola<1); • Copolymer styrene: SM 100:10 + 10% MD, initiator — APS, Т=70оС (Viola<2); • Copolymer styrene: SM 100:10 + 20% MD, initiator — APS (Viola<3). – Polyacrylate based latexes: • Butyl methacrylate: SM 100:10 +20% MD, initiator — APS, Т=80 0С (Viola<4); • Butyl methacrylate: methyl methacrylate + glycidyl methacrylate, initiator — OMC. Fractionation of nanoparticle suspensions by differential centrifugation For obtaining monodisperse latexes based on styrene and acrylate polymers the following scheme of differential centrifugation was applied (Fig. 2). The obtained fractions I, II, III were stored as 10% (v/v) water suspensions in the presence of 0.02% sodium azide, as preservative. Fractionation of metallic nickel particles coated with polymer was performed by sponta< neous sedimentation for different time inter< vals. The sedimentation rate at 1 g was high enough without centrifugation. The suspen< sion was submitted to ultrasonic treatment for effective disintegration (dispersion), the li< quid in a vessel was kept of constant level 7 cm, fraction of particles which sediment between 4 and 7 min was collected. The procedure was repeated three times. Fig. 1. Surface6active oligoperoxide polymeric complexes with metal cations. Radicals R1 and R2 are presented. Oligoperoxide group is noted with red arrow ; ;; БІОТЕХНОЛОГІЯ, Т. 1, №1, 2008 88 For light microscopy and micrometry of particle fractions, the smears were prepared on microscope slides as follows: 50 µl of sus< pension was centrifuged in Eppendorf’ tube, supernatant was discarded, the sediment was suspended in two volumes of bovine serum and smears were obtained as conventionally accepted in hematology. Microscopic investi< gation was conducted using objective ×40 and ocular ×15. The size of particle was measured using an ocular<micrometer AM9–2, 200–300 particles were measured in 3–4 fields and mean diameter was calculated. Functionalization of nanoparticles with specific proteins, opsonization of nanopar[ ticles for phagocytosis Opsonization of latexes was performed as following. Aliquot of latex was centrifuged, the sediment of particles was washed twice with 0.1 M pyrophosphate buffer pH 8.9 and The raw latex was homogenized in water using Potter<Elvehjem homogenizer with a tight pestle (the space between pestle and cylinder 0.1 mm) and suspension was adjusted to a concentration 1–1.5% by dilution with water The suspension was poured into a glass cylinder to the height of 10 cm and kept for two hours for spontaneous sedimentation of large particles and aggregates Supernatant was collected and centrifuged at 5,000 rpm for 20 min in an angle rotor. The pre< cipitate was collected and resuspended in water to concentration 1–1.5% Centrifugation of suspension at 2.000 rpm (500 g) in backet<rotor for 15 min Sediment suspended in water and cen< trifuged at 2.000 rpm (500g) for 15 min. Procedure is repeated three times Supernatant Centrifugation at 4.000 rpm (2.000g) for 15 min Sediment<fraction I Sediment suspended in water and centrifuged at 4.000 rpm (2.000 g) for 15 min, procedure repeated three times Supernatant Centrifuged at 5.000 rpm (3.300 g) for 25 min Sediment<fraction II Sediment< fraction III Fig. 2. Scheme of differential centrifugation of monodisperse latexes based on styrene and acrylate polymers Експериментальні статті 89 was suspended in double volume of human serum or 0.5% solution of concanavalin A in the same buffer. Suspension was kept in refrigerator for 24 hours, thereafter washed several times with PBS and the final suspen< sion was standardized according to the number of particles per ml (usually 400–500 mln/ml). Isolation of white blood cells Phagocytosis test was performed on leuko< cyte suspension of human blood, which was prepared as follows. In a sterile plastic syringe 1–2 ml of blood was taken with anticoagulant heparin (0.1 volume of medical heparin solu< tion diluted 1:10 with sterile saline). There< after 5% sterile solution of dextrane in saline was aspirated up to the final concentration of dextrane 1%, mixed and the syringe at an angle 450 for 20–30 min. In the presence was placed of dextrane, the sedimentation of red blood cells is accelerated, leaving over ery< throcytes plasma with leukocytes and small residue of erythrocytes. The volume of plasma enriched with leukocytes is about half of ini< tial blood volume. It was carefully transferred from syringe through plastic capillary tube into sterile Eppendorf’s plastic tube. In obtained leukocyte suspension the number of granulocytes and lymphocytes was deter< mined by the following way: 20 µl of leukocyte suspension was taken in an Eppedorf’s tube and cells were pelleted by centrifugation for 2 min at 1.500 rpm. Plasma was carefully dis< carded and cells were suspended in 40 µl solu< tion of 1% acetic acid with 0.5 % methyl green. After 5 min the suspension was investigated in hemocytometric unit (Horyaev type) at a mag< nification ×600 and nuclei of mononuclears and polymorphonuclears were differentially count< ed. The number of polymorphonuclears (PMN) and mononuclears (MN) in 1 µl were calculated. As traditional object of phagocytosis the killed cells of yeast Debariomyces hansenii were used. The suspension was prepared by dispersion of 1 mg of powder of dried cells in 0.5 ml of water. Effective dispersion was achieved by multiple passing of suspension through the finest needle of insulin syringe. The concentration of particles in suspension was determined by counting of aliquot diluted 1:50 with water in hemocytometric unit at magnification ×600. Usually the concentra< tion 2 mg/ml corresponds to 130–150 mln of yeast cells per ml. Nevertheless, each series of suspension should be standardized. For a pro< long storage (two weeks) suspension is pre< served with 0.02% of sodium azide. Experimental procedure of phagocytosis test 1. 50 µl of leukocyte suspension is placed in plastic Eppendorf tube, thereafter 1 µl of particle suspension is added, mixed and incu< bated at 37 0C for 50–55 min. 2. Tubes are centrifuged at 1.500 rpm for 2 min, supernatants are carefully aspirated leaving 3–4 µl, in which the precipitated cells are suspended and smears are prepared on microscope slides. Smears are fixed in metha< nol and stained by Romanovsky<Giemsa method. 3. Smears are investigated by light micros< copy with the use of immersion optic (×1.350). More then 500 cells in several fields are regis< tered and number of ingested particles (yeast cells or polymer beads) in each cell is noted (including zero). The next indexes of phagocy< tosis are calculated: phagocytosis indices, phagocytosis number I (extensive) and phago< cytosis number II (intensive), defined as fol< lows: Phagocytosis index — percent of phago< cyting cells in cell population; Phagocytosis number I (extensive) — amount of ingested particles, calculated for all registered cells; Phagocytosis number II (intensive) — amount of ingested particles, calculated on phagocytic (active) cells only. Results and Discussion Among a variety of methods of preparing of functional polymeric particles, the methods based on using SAP and OMC as universal and convenient tool are looking to be the most prospective for obtaining of reactive polymer< ic particles of tailored size and functionality. 1. Water dispersion polymerization initi6 ated by OMC Previously we have studied the formation of primary reactive polymer nanoparticles with functional shell by the technique of water dispersion polymerization initiated by OMC [8, 9]. The main regularities of controlled rad< ical polymerization initiated by oligoperoxide Men+<containing surfactants indicate the pos< sibility of the obtaining polymer water disper< sions comprising of unimodal nanoparticles with particle size in the range 30–70 nm as shown on Fig. 3 reactive functional shell capa< ble to radical, condensation and other reac< tions [9] in accordance with the scheme of polymerization presented below (Fig. 4). БІОТЕХНОЛОГІЯ, Т. 1, №1, 2008 90 Using coordinating oligoperoxide com< plexes with cations of rare earth elements for the initiation of styrene dispersion polymer< ization provides obtaining luminescent poly< meric nanoparticles with narrowed particle size distribution (Fig. 5 and 6). The nanoparti< cle luminescent properties were investigated by professor A. Voloshinovsky. One can see that highly monodisperse nanoparticles can be synthesized only at opti< mal content of luminescent OMC in water dis< persion system as initiator and stabilizer. This is explained, possibly, by the change of nano< particle formation mechanism at different OMC concentrations. Functional polystyrene nanoparticles pos< sess intense luminescent ability due to avail< ability of coordinated Ce3+ cations in the func< tional particle shell. It is evident that decrease of nanoparticles concentration in water system leads to the enhancement of luminescence intensity as a result of the increase of the sys< tem transparency. Fig. 3. SEM picture of functional polystyrene nanoparticles Fig. 4. Assumed mechanism of functional polymeric nanoparticle formation as a result of styrene water dispersion polymerization initiated by OMC Fig. 5. Size distribution of luminescent polymeric nanoparticles: 1— polystyrene latex with 3% of Се3+ complex; 2 — polystyrene latex with 2% of Се3+ complex; 3 — polystyrene latex with 1% of Се3+ complex ([Ce3+] =1.25%) Fig. 6. TEM picture of polystyrene nanoparticles with functional shell containing coordinated Ce+3 cations: 2% of Се<oligoperoxide complex per Н2О ([Ce3+] =1.25%) Експериментальні статті 91 As a result of sorption immobilization of luminescent surface<active oligoperoxide modifiers onto magnetic ferric oxide nanopar< ticle surface the novel functional magnetic and luminescent nanoparticles were synthe< sized (Fig. 7). 2. Water dispersion co6polymerization with surface6active monomers (SM and MD, have been synthesized by dr. O. Hevus and prof. V. Novikov respectively, Lviv Polytechnic National University) Novel monodisperse functional and colored polymer water dispersions with definite particle size and functionality were developed using sur< face<active functional maleates (SM) and acry< lates containing chromophore fragments (MD) as comonomers at water dispersion emulsifier free copolymerization of styrene. The struc< tures of used SM are presented on the Fig 8. It is evident from the Fig. 9 that copoly< merization of styrene with SM and MD of above<mentioned structures provides obtain< ing controlled amount of highly monodisperse colored nanoparticles with size 300 nm depending on the content of SM in initial monomer system. 3. Seeded polymerization initiated from the surface of the particles modified by OMC Functional polymeric nanoparticles con< taining radical forming sites in oligoperoxide shell immobilized on the particle surface are efficient initiators of seeded polymerization providing grafting of various functional chains at the definite distance from the parti< cle core. The experimental results of seeded low temperature polymerization initiated from the surface of functional polymer nanoparticles presented in the Table 1 display he formation of composite particles with «core<shell» morphology and the possibility of obtaining multi<layer reactive shell ws a result. It is evident (Fig. 10) that various monomers and monomer systems can be used for the Fig. 7. Spectra of luminescence of coordinating oligoperoxide Ce3+ complex, polymeric (1, 2, 3) and hybrid magnetic (4) nanoparticles with functional shell containing oligoperoxide Ce6complex: 1 — Water dispersions of polystyrene nanoparticles with functional shell containing coordinated Ce3+ cations (3% of Се<oligoperoxide complex per Н2О ([Ce3+] = 1.25%, [SC] latex = 17.0%); 2 — Water dispersions of polystyrene nanoparticles with functional shell containing coordinated Ce cations (3% of Се<oligoperoxide complex per Н2О ([Ce3+] = 1.25%, [SC] latex = 4.25%); 3 — Water dispersions of polystyrene nanoparticles with functional shell containing coordinated Ce cations (3% of Се<oligoperoxide complex per Н2О ([Ce3+] = 0.03%, [SC] latex = 17.0%); 4 — Fe3O4 nanoparticles with functional shell con< taining coordinated Ce3+ cations (Се<oligoperoxide complex [Ce3+] = 1.25%) Fig. 8. Structures of surface6active monomers (SM) and monomeric dyes (MD) used for the obtaining colored polymeric nanoparticles БІОТЕХНОЛОГІЯ, Т. 1, №1, 2008 92 fomation of the second and third functional polymer shells on the particles resulting in the change of particles hydrophobic<hydrophilic properties, their functionality and enhan< cement of size. The dependences of seeded polymerization rate on the concentration of sodium pentade< cyl sulphonate and particle<initiator content in the systems testify to the occurrence of the polymerization exceptionally on the primary particle surface providing the increase of their size. No news particles are formed du< ring seeded polymerization initiated by parti< cles modified by OMC. As a result of seeded water dispersion poly< merization initiated by radical forming sites in functional oligoperoxide shell new particles with complicated morphology and targeted functionality, compatibility (including bio< compatibility) and reactivity can be synthe< sized. 4. Homogeneous nucleation from the salt solutions in the presence of SAP or OMC This is the method of the formation of pri< mary reactive inorganic particles with func< tional shell by homogeneous nucleation from the solutions of corresponding metal salts in the presence of SAP and OMC [10–12] as it fol< lows from the scheme (Fig. 11). Reactive Ni colloids, Fe3O4, Ag and other nanoparticles with narrowed particle size dis< tribution and tailored functional shell and compatibility were synthesized by this techni< que in the presence of oligoperoxide surfac< tants [13–17]. The number average particle size distribution testifies to the tendency of the formation of unimodal nanoparticles at their formation in the presence of OMC sur< Fig. 9. Colored polystyrene nanoparticle size distribution in water dispersion systems synthesized with various content of surface6active maleates: 1 — 20% of SM St; 2 — 10% of SM St; 3 — 5 % SM St Fig. 10. Polystyrene nanoparticle size distribution after OMC initiated (1) and seeded (2) water disper6 sion polymerization Table 1. Multi6stage seeded (co) polymerization initiated from the particle surface (293К) First stage Second stage* Third stage ** Latex particle structure Dry residue, % D part., µm Monomer for the second shell*** Dry residue, % D part., µm Poly< meri< zation rate, W, %/h Mono< mer for the third shell Dry residue, % D part., µm Poly< meri< zation rate, W, %/h Core St<BA<VEP 53:32:15Shell OMC 22.0 0.015 F<MA Si<MA BA<GMA 90:10 27.0 25.5 28.0 0.020 0.018 0.020 7.2 9.0 10.2 – – – – – – – – – – – – Core St<BA<AA 70:25:5Shell — OMC 23.0 0.010 VEP<BA 50:50 29.0 0.014 9.0 Si<MA 33.0 0.016 7.2 F<MA 32.2 0.016 9.0 * The formation of the second shell was initiated by residual peroxide OMC in the particle shell. ** The formation of the third shell was initiated by additional ОМC sorbed onto particle surface ( 0.5% per monomers). *** F<MA<2,2,3,3<tetrafluoropropyl<2<methacrylate; Si<MA — (3<trimethoxysilyl) propyl<2<methacrylate; GMA — (2,3<epoxy propyl)<methacrylate. Diameter, nm Експериментальні статті 93 factant (Fig. 12). This is explained as we have shown earlier [8–10] by the displacement of the reaction of particle nucleation into micel< le<like structures formed by SAP, which are the templates determining the particle size. TEM (Fig. 12) study of nanoparticle hydro< sols witness the possibility of controlled syn< thesis of nanoparticles with size in the range 5–20 nm depending the nature and content of SAP and conditions of corresponding salt reduction in the presence of SAP as template and stabilizer. SAXS technique (Table 2), TEM (Fig. 12), SEM microscopy and magnetic measurements testify to favor of the realization of more com< plicated mechanism of ferric oxide formation as a result of homogeneous nucleation in the presence of functional oligoperoxide surfac< tants in accordance with scheme (Fig. 13). Proceeding from SEM and TEM microsco< py and SAXS analysis it can be suggested that integral Fe3O4 particles with size near 100–150 nm comprise of magnetic mineral core containing nanocrystals with size 8–12 nm and functional Fig. 11. Scheme of homogeneous nucleation of metal and metal oxide particles with functional OMC shell Fig. 12. Micrographs of functional hybrid nanoparticles: a — ТEM image of magnetite crystals (inset: number average distribution of crystal size obtained from SAXS data); b — SEM image of colloidal nickel particles Fig. 13. Synthesis and transformations of biocompatible functional nanocarriers on the basis of Fe3O4 polymeric shell providing radical reactions initiated from the particle surface and other polymer analogous transformations. SAP concentration and temperature of the synthesis are main factors defining integral nanoparticle size as well as the size of nanocrystals (Table 2). TEM micrographs of magnetite nanoparti< cles after 4 and 40 s sonification confirm compli< cated Fe3O4 nanoparticle morphology (Fig. 14). The availability of reactive functional shell on the nanoparticle surface not only pro< vides tailored rheological characteristics and compatibility with various media but also the possibility of the occurring of radical and other reactions with the participation of func< tional fragments located in the particle shell on the definite distance from the core. 5. Seeded polymerization initiated from inor6 ganic particle surface modified by OMC The presence of radical<forming sites on the particle surface causes the possibility of low temperature radical formation by diter< tiary peroxide groups and grafting polymer chains to surface with the formation of new functional shell at given distance from the surface (Fig.15 and Table 3). One can see (Fig. 15) that seeded polymer< ization initiated from the surface of inorganic particles obeys the same regularities, which are peculiar to the polymerization initiated from the polymer particle surface, namely, independence on the concentration of the addi< tional emulsifier. This proves the occurrence of graft polymerization only on the particle surface and the impossibility of particle for< mation in the solution. The polymerization rate and conversion depend strongly on the modi< fied filler nature and its content in the reac< tion system. The study of the particles after seeded polymerization witnesses about the increase of their size and respectively tailored for< mation of grafted chains containing the definite amount of active epoxide and peroxide fragments. БІОТЕХНОЛОГІЯ, Т. 1, №1, 2008 94 Table 2. The influence of the synthesis temperature and SAP concentration on the characteristics of functional magnetite nanoparticles Т, К [SAP], % Crystal size, dcr, nm Seed concen< tration Nsmole/l·106 SAP mole< cule amount per 1 seed NSAP·103 Polymer<mineral particle size dN, nm* / weight mode, % Poly< dispersity index k Seed amount per 1 parti< cle N·10–3 293 0 10.4±1.0 1.09 0 146±57/ 96.5 1.66 2.77 0.2 9.6±0.9 1.38 0.28 97±27 / 92.1 4.62 1.03 2 8.9±0.9 1.74 2.21 78±26 / 78.4 2.94 0.67 333 0 12.6±1.1 0.61 0 71±21 / 82.4 3.19 0.18 0.2 10.5±1.0 1.06 0.36 67±19 / 73.3 2.21 0.26 2 9.6±0.9 1.38 2.78 – – – 363 0 13.3±1.2 0.52 0 87±39 / 59.3 1.83 0.28 0.2 12.4±1.1 0.64 0.60 72±27 / 44.6 1.66 0.13 2 10.2±1.0 1.15 3.33 69±27 / 58.1 2.14 0.47 Fig. 14. TEM pictures of Fe3O4 nanoparticles after 4s (a) and 40s (b) ultrasound treatment * Number average diameter calculated for the mode with maximum weight in particle diameter distribution plot. a b 6. Potentials for biomedical application: Employment of nanoparticles in study of phagocytic activity of human blood granulocytes The characteristics of different particle fractions obtained by differential centrifuga< tion are presented in Fig. 16. The most suit< able for application in phagocytosis studies were dimension and homogeneity of fractions III of styrene polymers, which were sediment< ed at relatively high g<values. The diameter of particles in these suspensions was in 0.7–1.5 µm range. Latex particles as objects of phagocytosis were pretreated with different proteins, which is defined as «opsonization». It is known, that efficiency of ingestion of particles by phagocytic cells (neutrophile granulocytes or macrophages) depends upon the properties of particle surface, especially upon surface pro< teins. Substances, including proteins, which stimulate phagocytosis are called «opsonins» and process of coating particles with these substances does «opsonization». The most effective opsonins are immunoglobulins and antibodies, that are adsorbed on particle sur< face by different bonds (physical or chemical). In our experiments, opsonization of microparticles was performed by using proteins of human blood serum, or concanavalin A. The last one is a plant protein — lectin, which selec< tively binds carbohydrates mannose, glucose and acetamidoglucose. In natural conditions, it binds with polysaccharides glucans and man< nans, or with glycoproteins, exposing residues of mannose and acetamidoglucose. Being absorbed on particle surface, concanavalin A favors the attachment of particle to cell surface of phagocytes ant its ingestion. Investigations of phagocytosis activity obtained with different types of latexes are shown in table 4. In Fig. 17 an example of cytological pat< tern of phagocytosis with different objects including polymer coated nickel micro parti< cles is presented. Експериментальні статті 95 Fig. 15. Water dispersion polymerization rate of VEP6GMA*6St mixture vs. filler content (1, 2) and concentration of emulsifier E630 (1a, 2a). Initiation from the OMC modified filler surface: g<Fe2O3 ([OMC] = 0.7%) (1, 1a) colloidal Ni particles ([OMC] = 0.45%) (2, 2a); 291 К Table 3. Characteristics of copolymer GMA6VEP6St grafted to the surface of inorganic nanoparticles (291 К; monomers: Н2О = 1:5; GMA6VEP6St 2:1:1) Particles Particle content,% Content of grafted copolymer, % Composition of grafted copolymer, % GMA VEP St γ<Fe2O3 [OMC] = 0.7% 17.4 1.6 50.0 25.0 25.0 30 2.5 60.0 19.0 21.0 60 5.0 75.0 16.0 9.0 Colloidal Ni [OMC] = 0.45% 17.4 0.8 65.0 5.5 29.5 30 1.1 55.0 6.0 39.0 60 2.5 50.0 10.0 40.0 * Glycidil methacrylate. БІОТЕХНОЛОГІЯ, Т. 1, №1, 2008 96 Fig. 16. Fractions of nanoparticles obtained with centrifugation of latex at different g6values: 1 — sediment, obtained by spontaneous sedimentation (1g) for two hours; 2 — fraction, obtained by centrifugation at 540 g for 15 min; 3 — fraction, obtained by centrifugation at 2.000 g for 15 min; 4 — fraction, obtained by centrifugation at 3.300 g for 25 min Table 4. Effectiveness of polystyrene latexes as objects of phagocytosis N Object of phagocytosis Phagocytosis index (%) Phagocytosis number I (extensive) Phagocytosis number II (intensive) 1 Yeast cells Debariomyces hansenii 40 0.65 1.6 2 Unsensibilized latex #1 18 0.2 1.3 3 Latex #1 43 1.2 2.7 4 Latex #1, sensibilized with proteins of human blood serum 50 1.5 3.0 5 Latex #3, sensibilized with concanavalin A 34 0.9 2.7 6 Latex #3, sensibilized with proteins of human blood serum 45 1.0 2.4 7 Latex NM<20, sensibilized with concanavalin A 21 0.3 1.3 8 Latex NM<20, sensibilized with proteins of human blood serum 17 0.2 1.1 9 Latex #11, sensibilized with concanavalin A 47 0.9 1.9 10 Latex #11, sensibilized with proteins of human blood serum 65 1.9 2.9 11 Latex Viola<1 (LV<1), sensibilized with concanavalin A 40 0.9 2.4 12 Latex Viola<2 (LV<2), sensibilized with concanavalin A 47 0.9 2.4 13 Latex Viola<3 (LV<3), sensibilized with concanavalin A 50 1.0 2.0 In this research various approaches of oligoperoxide metal complexes and surface<active oligoperoxides use for the activation of colloidal particles causing polymer grafting onto their sur< face have been demonstrated. They permit to obtain nanoparticles of «core<shell» structure with fragments providing their tailored compati< bility, functionality and reactivity including bio< compatibility and specific biological activity. Functional nanoparticles including magnet< ic, colored and luminescent ones contain the spacers with the functional groups, which are capable to radical and polymer<analogous trans< formations. They were successfully tested as stained or magnetic labels for investigation of phagocytosis, labeling of pathological cells as well as nanocarriers for addressed drug delivery. In phagocytosis experiments, the advantage of latex microparticles as compared with yeast cells is the existence of chemically conditioned surface and possibility of its modification by attachment of distinct ligand with known Експериментальні статті 97 Fig. 17. Activity of polymorphonuclear leukocytes with different objects of phagocytosis: 1, 2 — phagocytosis of commonly used object — yeast cells Deberiomyces hansenii. 1 — in the central part four moderately active neutrophiles (1–2 yeast cells ingested) are visible, in upper part (12 o’clock) nonphagocyting eosinophile (common state), in the left part of image (7 o’clock) — active monocyte; 2 — the group of hyperreactive neutrophiles, the cytoplasm is completely occupied with ingested yeasts; 3, 4, 5 — particles of latex NM<20 as objects of phagocytosis; 3 — opsonization with proteins of human blood serum, two silent and one weak activity neutrophiles are present, on periphery there are three silent (non<phagocytic) lymphocytes (common state); 4 — opsonization with proteins of human blood serum, the group of hyperreactive neutrophiles; 5 — opsonization with concanavalin A; in the left side hyperreactive neutrophiles are visible, in the right side — two silent neutrophiles; 6 — nickel particles coated with polymeric envelope as an object of phagocytosis structure. The surface of yeast cells is very complex and manifold, dependent from the strain of microorganism. Due to this considera< tion, the interpretation of results obtained with using microparticles is much easier. Efficiency of ingestion of latex particles by phagocytes depends from chemical nature of polymer, technology of production, opsoni< zation. Opsonization with proteins of blood serum or with lectins (in our case with con< canavalin A) significantly increases the effi< ciency of their ingestion by phagocytes and achieves values for classical object of phagocy< tosis — yeast cells. Nickel microparticles coated with polymer envelope and opsonized with blood serum pro< teins are comparatively well ingested by phagocytes and can be used for isolation of phagocyting cells from the rest of population using magnet, as particles possess ferromag< netic properties. Proposed technology of synthesis of latexes and their fractionation for obtaining a mono< disperse suspensions can be used for determi< nation of phagocytosis activity of blood cells in clinical laboratories with diagnostic purpose. The study described in the article was obtained during performance of two STCU projects (#1930 and 4140). The authors express their thanks to Professor A. Voloshi< novssky for his fruitful discussion of experi< mental results. 1. Antonietti M., Wenz E., Bronstein L., Seregina M. Synthesis and characteruzation of noble metal colloids in block copolymer micelles // Adv. Mater. — 1995. — V. 7. — P. 1000–1005. 2. Rimmer S. Routes to functionalized latices // Design. Monom. Polym. — 1998. — V. 1. — P. 89–96. 3. Okubo M., Takekoh R., Sugano H. Production of micron<sized, monodispersed, multilaye< red composite polymer particles by multistep seeded dispersion polymerization // Colloid. Polym. Sci. — 2000. — V. 278, №6. — P. 559–564. 4. Mardyani S., Jiang W., Lai J. Bioinspired approaches to building Nanoscale devices // Biological nanostructures and applications of nanostructures in biology / M. Stroscio, M. Dutareds. — NY: Kluwer Acad. Publ., 2004. — P.149. 5. Zaichenko A., Voronov S., Kuzayev A. et al. Control of Microstructure and Molecular Weight Distribution of Carbon<Chain Heterofunctional Oligoperoxidic Curing Agents // J. Appl. Polym. Sci. — 1998. — V. 70. — P. 2449–2455. 6. Zaichenko A., Mitina N., Kovbuz M. et al. Surface<Active Metal<Coordinated Oligope< roxidic Radical Initiators. 1. Interrelation between Microstructure of Ditertiary Oligo< peroxides and their Ability to form Stable Metal Complexes // J. Polym. Sci. — 2000. — V. А38. — P. 516–527. 7. Молдавский Б., Кернос Ю. Малеиновый ангидрид и малеиновая кислота. — Л.: Хи< мия, 1977. — 87 с. 8. Zaichenko A., Mitina N., Shevchuk O. et al. Colloidal systems containing cold free–radi< cal forming particles and coatings on their basis // Macromol. Symp. (React. Pol.). — 2001. — V.164. — P. 25–47. 9. Zaichenko A., Mitina N., Kovbuz M., Artym I., Voronov S. Low–temperature surface<active complex<radical oligo(di<tert<alkyl) peroxide initiators and curing agents // Ibid. — 2001. — V. 164. — P. 47–71. 10. Zaichenko A., Shevchuk O., Samaryk V., Voronov S. The peculiarities of homogeneous nucleation of reactive Cu0 colloidal particles in the presence of functional oligoperoxides // J. Col. Interf. Sci. — 2004. — V. 275. — P. 204–213. 11. Zaichenko A., Shevchuk O., Voronov S., Sido$ renko A. Heterogeneous Catalytic Initiation by Cu0 Colloidal Particles of Water<Disper< sion Polymerization. // Macromolecules. — 1999. — V. 32. — P. 5707–5711. 12. Novikov V., Zaichenko A., Mitina N. et al. Inor< ganic, polymeric and hybrid colloidal carriers with multi<layer reactive shell // Macromol. Symp. — 2003. — V. 210. — P. 193–202. 13. Пат. 20068 VA, 5 МПК В22 F9/16, 9/24. Колоїдні металополімери та спосіб їх одержання / О. С. Зайченко, С. А. Воро< нов, О. М. Шевчук. — Заявл. 07.08.2005; Опубл. 25.12.2007, Бюл. №6. 14. Zaichenko A., Bolshakova I., Mitina N., Shevchuk O. et al. The synthesis and rheolog< ical characteristics of colloidal systems con< taining functional magnetic nanoparticles // J. Magnet. Matter. — 2005. — V. 289. — P.17–20. 15. Stoika R. S., Kashchak N. I., Lutsik$ Kordovsky M. D. et al. In vitro response of phagocytic cells to immunomodulating agents // Med. Sci. Monitor. — 2001. — V. 7, N4. — P. 652–658. 16. Stoika R. S., Lutsik$Kordovsky M. D., Bars$ kaM. L., Tsyrulnyk A. O. In vitro studies of activation of phagocytic cells by bio<active peptides // J. Physiol. Pharmacol. — 2002. — V. 53, N4. — Pt.1. — P. 675–688. 17. Bilyy R. O., Antonyuk V. O., Stoika R. S. Cytochemical study of a<D<mannose< and b< D<galactose<containing glycoproteins in БІОТЕХНОЛОГІЯ, Т. 1, №1, 2008 98 LITERATURE apoptosis // J. Mol. Histol. — 2004. — V. 35, N8. — P. 829–838. 18. Bilyy R., Stoika R. Search for novel cell sur< face markers of apoptotic cell // Autoimmu< nity. — 2007.— V. 40, N4. — P. 249–253. НОВІ ФУНКЦІОНАЛЬНІ НАНОРОЗМІРНІ КОМПОЗИТИ НА ОСНОВІ ОЛІГОПЕРОКСИДНИХ СУРФАКТАНТІВ: СИНТЕЗ І ЗАСТОСУВАННЯ В БІОЛОГІЇ ТА МЕДИЦИНІ О. C. Заіченко1, Р. С. Стойка2, Н. Є. Мітіна1, М. Д. Луцик2, О. М. Шевчук1, В. Р. Лобаз1, Н. М. Бойко2 1Національний університет «Львівська політехніка», Львів 2Інститут біології клітини НАН України, Львів E$mail: zaichenk@polynet.lviv.ua Розглянуто основні експериментальні підходи до цілеспрямованого синтезу поверх< нево<активних олігопероксидних речовин і їх застосування з метою одержання полімерних і гібридних нанорозмірних носіїв, яким при< таманна скерована функціональність та біосу< місність. Конструювання нових лінійних, бло< кових та гребенеподібних олігопероксидних сурфактантів, а також їхніх похідних коорди< наційних комплексів із катіонами перехідних та рідкоземельних металів є зручним інстру< ментом для синтезу люмінесцентних, магніт< них та інших функціональних нанокомпозитів із регульованим розподілом за розмірами, функ< ціональністю, реактивністю та біосумісністю. Розроблені методи дозволяють поєднати ста< дію формування полімерних, металевих та металооксидних наночастинок зі стадією нео< боротної модифікації їхньої поверхні функціо< нальними поверхнево<активними олігоперок< сидами, здатними зв’язувати фізіологічно активні речовини. Наявність реакційноздат< них дитретинних пероксидних фрагментів уможливлює функціоналізацію створених на< ночастинок, що їх було застосовано для дослі< дження фагоцитозу як поверхневі маркери па< тологічних клітин, а також для спрямованого доставлення лікарських препаратів. Ключові слова: олігопероксидні сурфактанти, металеві комплекси, радикальна емульсійна полі< меризація, гомогенна нуклеація, функціональні колоїдні частинки, затравкова полімеризація, фагоцитоз, доставлення лікарських препаратів. НОВЫЕ ФУНКЦИОНАЛЬНЫЕ НАНО6 РАЗМЕРНЫЕ КОМПОЗИТЫ НА ОСНОВЕ ОЛИГОПЕРОКСИДНЫХ СУРФАКТАНТОВ: СИНТЕЗ И ПРИМЕНЕНИЕ В БИОЛОГИИ И МЕДИЦИНЕ О. С. Заиченко1, Р. С. Стойка2, Н. Е. Митина1, М. Д. Луцик2, О. М. Шевчук1, В. Р. Лобаз1, Н. М. Бойко2 1Национальный университет «Львовская политехника», Львов 2Институт биологии клетки НАН Ук$ раины, Львов E$mail: zaichenk@polynet.lviv.ua Рассмотрены основные эксперименталь< ные подходы к целенаправленному синтезу олигопероксидных поверхностно<активных веществ и их использованию для получения полимерных и гибридных наноразмерных но< сителей, обладающих заданной функциональ< ностью и биосовместимостью. Конструирование новых линейных, блочных и гребеневидных олигопероксидных сурфактантов, а также их производных координационных комплексов с катионами переходных и редкоземельных металлов является удобным инструментом для синтеза люминесцентных, магнитных и других функциональных нанокомпозитов с регулируемым распределением по размеру, функциональности, реакционной способности и биосовместимости. Разработанные методы обеспечивают совмещение стадии формирова< ния полимерных, металлических и металло< оксидных наночастиц со стадией необратимой модификации их поверхности функциональ< ными поверхностно<активными олигоперокси< дами, способными к связыванию физиологически активных веществ. Наличие реакционноспо< собных дитретичных пероксидных фрагмен< тов обеспечивает возможность функционали< зации полученных наночастиц, которые использовались для изучения фагоцитоза как поверхностные маркеры патологических кле< ток, а также для целевой доставки лекарствен< ных препаратов. Ключевые слова: олигопероксидные сурфак< танты, металлические комплексы, радикальная эмульсионная полимеризация, гомогенная нуклеа< ция, функциональные коллоидные частицы, затра< вочная полимеризация, фагоцитоз, доставка лекар< ственных препаратов. Експериментальні статті 99 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Warning /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJDFFile false /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /ColorConversionStrategy /LeaveColorUnchanged /DoThumbnails false /EmbedAllFonts true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage false /PreserveEPSInfo true /PreserveHalftoneInfo false /PreserveOPIComments false /PreserveOverprintSettings true /StartPage 1 /SubsetFonts false /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages false /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages false /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /DownsampleMonoImages false /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown /Description << /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e> /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e> /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e> /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e> /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e> /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e> /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e> /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e> /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e> >> >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice