Limit theorems for oscillatory functionals of a Markov process

We study the limit behavior of a family of functionals from a given Markov process which are called oscillatory functionals. The typical oscillatory functional is homogeneneous and non-negative but neither additive nor continuous. We claim that the discontinuity and non-additivity of functionals fro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Androshchuk, T.O., Kulik, A.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2005
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4224
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Limit theorems for oscillatory functionals of a Markov process / T.O. Androshchuk, A.M. Kulik // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 3-13. — Бібліогр.: 6 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4224
record_format dspace
spelling irk-123456789-42242009-11-24T18:30:45Z Limit theorems for oscillatory functionals of a Markov process Androshchuk, T.O. Kulik, A.M. We study the limit behavior of a family of functionals from a given Markov process which are called oscillatory functionals. The typical oscillatory functional is homogeneneous and non-negative but neither additive nor continuous. We claim that the discontinuity and non-additivity of functionals from a given family vanish in the limit and, in this framework, prove a generalization of the theorem by E.B. Dynkin on the convergence of a family of W-functionals. 2005 Article Limit theorems for oscillatory functionals of a Markov process / T.O. Androshchuk, A.M. Kulik // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 3-13. — Бібліогр.: 6 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4224 519.21 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study the limit behavior of a family of functionals from a given Markov process which are called oscillatory functionals. The typical oscillatory functional is homogeneneous and non-negative but neither additive nor continuous. We claim that the discontinuity and non-additivity of functionals from a given family vanish in the limit and, in this framework, prove a generalization of the theorem by E.B. Dynkin on the convergence of a family of W-functionals.
format Article
author Androshchuk, T.O.
Kulik, A.M.
spellingShingle Androshchuk, T.O.
Kulik, A.M.
Limit theorems for oscillatory functionals of a Markov process
author_facet Androshchuk, T.O.
Kulik, A.M.
author_sort Androshchuk, T.O.
title Limit theorems for oscillatory functionals of a Markov process
title_short Limit theorems for oscillatory functionals of a Markov process
title_full Limit theorems for oscillatory functionals of a Markov process
title_fullStr Limit theorems for oscillatory functionals of a Markov process
title_full_unstemmed Limit theorems for oscillatory functionals of a Markov process
title_sort limit theorems for oscillatory functionals of a markov process
publisher Інститут математики НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/4224
citation_txt Limit theorems for oscillatory functionals of a Markov process / T.O. Androshchuk, A.M. Kulik // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 3-13. — Бібліогр.: 6 назв.— англ.
work_keys_str_mv AT androshchukto limittheoremsforoscillatoryfunctionalsofamarkovprocess
AT kulikam limittheoremsforoscillatoryfunctionalsofamarkovprocess
first_indexed 2023-03-24T08:29:31Z
last_indexed 2023-03-24T08:29:31Z
_version_ 1796139160360189952