Узагальнення теореми Арцела–Асколі

Нехай (T, d) – повний псевдометричний простiр, а X – сепарабельний збiжнiсний простiр. Говоримо, що послiдовнiсть (fn) у TX збiгається до f що належить T^X рiвномiрно в точцi x, якщо спiввiдношення fn(xn) → f(x) справджується для всякої збiжної до x послiдовностi (xn). Показано, що для вiдносної ком...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Юрачківський, А.П.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2011
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/43727
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Узагальнення теореми Арцела–Асколі / А.П. Юрачкiвський // Доп. НАН України. — 2011. — № 10. — С. 30-36. — Бібліогр.: 2 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-43727
record_format dspace
spelling irk-123456789-437272013-05-16T03:07:02Z Узагальнення теореми Арцела–Асколі Юрачківський, А.П. Математика Нехай (T, d) – повний псевдометричний простiр, а X – сепарабельний збiжнiсний простiр. Говоримо, що послiдовнiсть (fn) у TX збiгається до f що належить T^X рiвномiрно в точцi x, якщо спiввiдношення fn(xn) → f(x) справджується для всякої збiжної до x послiдовностi (xn). Показано, що для вiдносної компактностi (fn) вiдносно поточково збiжної послiдовностi необхiдною i достатньою є така пара умов: 1) d(fn(xn), fn(x)) → 0 для будь-яких x що належать X i збiжної до x послiдовностi (xn); 2) iснує злiченна послiдовнiсно щiльна множина X0 включена в X така, що всi послiдовностi (fn(x)), x що належить X0, вiдносно компактнi. Let (T, d) be a complete pseudometric space and X be a sequentially separable space with axiomatically defined convergence. We say that a sequence (fn) in T^X converges to f belongs T^X uniformly at a point x if the relation fn(xn) → f(x) holds for every sequence (xn) converging to x. It is shown that the following pair of conditions is necessary and sufficient for the relative compactness of (fn) with respect to the pointwise uniform convergence: 1) d(fn(xn), fn(x)) → 0 for all x belongs X and sequences (xn) converging to x; 2) there exists a countable sequentially dense set X0 is included in X such that all the sequences (fn(x)), x belongs X0, are relatively compact. 2011 Article Узагальнення теореми Арцела–Асколі / А.П. Юрачкiвський // Доп. НАН України. — 2011. — № 10. — С. 30-36. — Бібліогр.: 2 назв. — укр. 1025-6415 http://dspace.nbuv.gov.ua/handle/123456789/43727 519.56 uk Доповіді НАН України Видавничий дім "Академперіодика" НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic Математика
Математика
spellingShingle Математика
Математика
Юрачківський, А.П.
Узагальнення теореми Арцела–Асколі
Доповіді НАН України
description Нехай (T, d) – повний псевдометричний простiр, а X – сепарабельний збiжнiсний простiр. Говоримо, що послiдовнiсть (fn) у TX збiгається до f що належить T^X рiвномiрно в точцi x, якщо спiввiдношення fn(xn) → f(x) справджується для всякої збiжної до x послiдовностi (xn). Показано, що для вiдносної компактностi (fn) вiдносно поточково збiжної послiдовностi необхiдною i достатньою є така пара умов: 1) d(fn(xn), fn(x)) → 0 для будь-яких x що належать X i збiжної до x послiдовностi (xn); 2) iснує злiченна послiдовнiсно щiльна множина X0 включена в X така, що всi послiдовностi (fn(x)), x що належить X0, вiдносно компактнi.
format Article
author Юрачківський, А.П.
author_facet Юрачківський, А.П.
author_sort Юрачківський, А.П.
title Узагальнення теореми Арцела–Асколі
title_short Узагальнення теореми Арцела–Асколі
title_full Узагальнення теореми Арцела–Асколі
title_fullStr Узагальнення теореми Арцела–Асколі
title_full_unstemmed Узагальнення теореми Арцела–Асколі
title_sort узагальнення теореми арцела–асколі
publisher Видавничий дім "Академперіодика" НАН України
publishDate 2011
topic_facet Математика
url http://dspace.nbuv.gov.ua/handle/123456789/43727
citation_txt Узагальнення теореми Арцела–Асколі / А.П. Юрачкiвський // Доп. НАН України. — 2011. — № 10. — С. 30-36. — Бібліогр.: 2 назв. — укр.
series Доповіді НАН України
work_keys_str_mv AT ûračkívsʹkijap uzagalʹnennâteoremiarcelaaskolí
first_indexed 2023-10-18T17:58:54Z
last_indexed 2023-10-18T17:58:54Z
_version_ 1796143003369209856