Большие уклонения для обратных стохастических уравнений с квадратичным ростом

Доведено принцип великих відхилень для обернених стохастичних рівнянь, пов'язаних із сім'єю марковських процесів з малою дифузією, коефіцієнти яких залежать від малого параметра. При обгрунтуванні даного принципу встановлено рівномірну на компактах збіжність розв'язків напівлінійних п...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Качанова, И.А.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2011
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/43817
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Большие уклонения для обратных стохастических уравнений с квадратичным ростом / И.А. Качанова // Доп. НАН України. — 2011. — № 11. — С. 15-19. — Бібліогр.: 10 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Доведено принцип великих відхилень для обернених стохастичних рівнянь, пов'язаних із сім'єю марковських процесів з малою дифузією, коефіцієнти яких залежать від малого параметра. При обгрунтуванні даного принципу встановлено рівномірну на компактах збіжність розв'язків напівлінійних параболічних рівнянь другого порядку з малим параметром при старшій похідній і коефіцієнтами, що залежать від цього параметра і слабко збігаються в L2,loc.