О спектре сингулярных возмущений полупериодических операторов

Досліджено властивості заданих у комплексному сепарабельному гільбертовому просторі L^2(0,1) операторів (D^2−)^s+V(x), s що належить (1/2,∞), де D^2−=−d^2/dx^2 — диференціальний оператор з напівперіодичними граничними умовами, а 1-періодична узагальнена функція V(x) належить негативному простору Соб...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Михайлец, В.А., Молибога, В.Н.
Формат: Стаття
Мова:Russian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2011
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/43821
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О спектре сингулярных возмущений полупериодических операторов / В.А. Михайлец, В.Н. Молибога // Доп. НАН України. — 2011. — № 11. — С. 36-43. — Бібліогр.: 8 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Досліджено властивості заданих у комплексному сепарабельному гільбертовому просторі L^2(0,1) операторів (D^2−)^s+V(x), s що належить (1/2,∞), де D^2−=−d^2/dx^2 — диференціальний оператор з напівперіодичними граничними умовами, а 1-періодична узагальнена функція V(x) належить негативному простору Соболєва H^−sα +, α що належить [0,1]. Дано опис якісних спектральних властивостей таких операторів, знайдено многочленні асимптотичні формули для їх власних значень при s що належить (1,∞) як в самоспряженому випадку, так і в несамоспряженому.