О спектре сингулярных возмущений полупериодических операторов
Досліджено властивості заданих у комплексному сепарабельному гільбертовому просторі L^2(0,1) операторів (D^2−)^s+V(x), s що належить (1/2,∞), де D^2−=−d^2/dx^2 — диференціальний оператор з напівперіодичними граничними умовами, а 1-періодична узагальнена функція V(x) належить негативному простору Соб...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2011
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/43821 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О спектре сингулярных возмущений полупериодических операторов / В.А. Михайлец, В.Н. Молибога // Доп. НАН України. — 2011. — № 11. — С. 36-43. — Бібліогр.: 8 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Досліджено властивості заданих у комплексному сепарабельному гільбертовому просторі L^2(0,1) операторів (D^2−)^s+V(x), s що належить (1/2,∞), де D^2−=−d^2/dx^2 — диференціальний оператор з напівперіодичними граничними умовами, а 1-періодична узагальнена функція V(x) належить негативному простору Соболєва H^−sα +, α що належить [0,1]. Дано опис якісних спектральних властивостей таких операторів, знайдено многочленні асимптотичні формули для їх власних значень при s що належить (1,∞) як в самоспряженому випадку, так і в несамоспряженому. |
---|