PRV property and the asymptotic behaviour of solutions of stochastic differential equations

We consider the a.s. asymptotic behaviour of a solution of the stochastic differential equation (SDE) dX(t) = g(X(t))dt + σ(X(t))dW(t), with X(0) ≡ b > 0, where g(.) and σ(.) are positive continuous functions and W(.) is the standard Wiener process. By applying the theory of PRV and PMPV funct...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Buldygin, V.V., Klesov, O.I., Steinebach, J.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2005
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4424
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:PRV property and the asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 42–57. — Бібліогр.: 17 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4424
record_format dspace
spelling irk-123456789-44242009-11-10T12:00:30Z PRV property and the asymptotic behaviour of solutions of stochastic differential equations Buldygin, V.V. Klesov, O.I. Steinebach, J.G. We consider the a.s. asymptotic behaviour of a solution of the stochastic differential equation (SDE) dX(t) = g(X(t))dt + σ(X(t))dW(t), with X(0) ≡ b > 0, where g(.) and σ(.) are positive continuous functions and W(.) is the standard Wiener process. By applying the theory of PRV and PMPV functions, we find the conditions on g(.) and σ(.), under which X(.) resp. f(X(.)) may be approximated a.s. on {X(t)→∞} by μ(.) resp. f(μ(.)), where μ( ) is a solution of the deterministic differential equation dμ(t) = g(μ(t))dt with μ(0) = b, and f(.) is a strictly increasing function. Moreover, we consider the asymptotic behaviour of generalized renewal processes connected with this SDE. 2005 Article PRV property and the asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 42–57. — Бібліогр.: 17 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4424 519.21 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider the a.s. asymptotic behaviour of a solution of the stochastic differential equation (SDE) dX(t) = g(X(t))dt + σ(X(t))dW(t), with X(0) ≡ b > 0, where g(.) and σ(.) are positive continuous functions and W(.) is the standard Wiener process. By applying the theory of PRV and PMPV functions, we find the conditions on g(.) and σ(.), under which X(.) resp. f(X(.)) may be approximated a.s. on {X(t)→∞} by μ(.) resp. f(μ(.)), where μ( ) is a solution of the deterministic differential equation dμ(t) = g(μ(t))dt with μ(0) = b, and f(.) is a strictly increasing function. Moreover, we consider the asymptotic behaviour of generalized renewal processes connected with this SDE.
format Article
author Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
spellingShingle Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
PRV property and the asymptotic behaviour of solutions of stochastic differential equations
author_facet Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
author_sort Buldygin, V.V.
title PRV property and the asymptotic behaviour of solutions of stochastic differential equations
title_short PRV property and the asymptotic behaviour of solutions of stochastic differential equations
title_full PRV property and the asymptotic behaviour of solutions of stochastic differential equations
title_fullStr PRV property and the asymptotic behaviour of solutions of stochastic differential equations
title_full_unstemmed PRV property and the asymptotic behaviour of solutions of stochastic differential equations
title_sort prv property and the asymptotic behaviour of solutions of stochastic differential equations
publisher Інститут математики НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/4424
citation_txt PRV property and the asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 42–57. — Бібліогр.: 17 назв.— англ.
work_keys_str_mv AT buldyginvv prvpropertyandtheasymptoticbehaviourofsolutionsofstochasticdifferentialequations
AT klesovoi prvpropertyandtheasymptoticbehaviourofsolutionsofstochasticdifferentialequations
AT steinebachjg prvpropertyandtheasymptoticbehaviourofsolutionsofstochasticdifferentialequations
first_indexed 2023-03-24T08:30:07Z
last_indexed 2023-03-24T08:30:07Z
_version_ 1796139179143331840