Investigation of the asymptotics of a renewal matrix
A semi-Markov process with finite state space and continuous time without finiteness condition of a mean stay time of this process in every fixed state is considered. The asymptotic behaviour of the renewal matrix at infinity is established under condition that the distribution tail of the stay time of...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4439 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Investigation of the asymptotics of a renewal matrix / N. V. Buhrii // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 33–37. — Бібліогр.: 8 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-4439 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-44392009-11-11T12:00:28Z Investigation of the asymptotics of a renewal matrix Buhrii, N.V. A semi-Markov process with finite state space and continuous time without finiteness condition of a mean stay time of this process in every fixed state is considered. The asymptotic behaviour of the renewal matrix at infinity is established under condition that the distribution tail of the stay time of the semi-Markov process in every fixed state is a regularly varying function at infinity with exponent −1. 2006 Article Investigation of the asymptotics of a renewal matrix / N. V. Buhrii // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 33–37. — Бібліогр.: 8 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4439 519.21 en Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A semi-Markov process with finite state space and continuous time without finiteness
condition of a mean stay time of this process in every fixed state is considered. The asymptotic behaviour of the renewal matrix at infinity is established under condition that the distribution tail of the stay time of the semi-Markov process in every fixed state is a regularly varying function at infinity with exponent −1. |
format |
Article |
author |
Buhrii, N.V. |
spellingShingle |
Buhrii, N.V. Investigation of the asymptotics of a renewal matrix |
author_facet |
Buhrii, N.V. |
author_sort |
Buhrii, N.V. |
title |
Investigation of the asymptotics of a renewal matrix |
title_short |
Investigation of the asymptotics of a renewal matrix |
title_full |
Investigation of the asymptotics of a renewal matrix |
title_fullStr |
Investigation of the asymptotics of a renewal matrix |
title_full_unstemmed |
Investigation of the asymptotics of a renewal matrix |
title_sort |
investigation of the asymptotics of a renewal matrix |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/4439 |
citation_txt |
Investigation of the asymptotics of a renewal matrix / N. V. Buhrii // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 33–37. — Бібліогр.: 8 назв.— англ. |
work_keys_str_mv |
AT buhriinv investigationoftheasymptoticsofarenewalmatrix |
first_indexed |
2023-03-24T08:30:10Z |
last_indexed |
2023-03-24T08:30:10Z |
_version_ |
1796139180722487296 |