An example of a stochastic differential equation with the property of weak non-uniqueness of a solution

A family of one-dimensional diffusion processes is constructed such that each one of this family is a weak solution to some stochastic differential equation. It turns out that the property of weak uniqueness of a solution to this equation is failed.

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Kopytko, B.I., Portenko, M.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4442
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:An example of a stochastic differential equation with the property of weak non-uniqueness of a solution / B.I. Kopytko, M.I. Portenko // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 68–76. — Бібліогр.: 13 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-4442
record_format dspace
spelling irk-123456789-44422009-11-11T12:00:31Z An example of a stochastic differential equation with the property of weak non-uniqueness of a solution Kopytko, B.I. Portenko, M.I. A family of one-dimensional diffusion processes is constructed such that each one of this family is a weak solution to some stochastic differential equation. It turns out that the property of weak uniqueness of a solution to this equation is failed. 2006 Article An example of a stochastic differential equation with the property of weak non-uniqueness of a solution / B.I. Kopytko, M.I. Portenko // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 68–76. — Бібліогр.: 13 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4442 519.21 en Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A family of one-dimensional diffusion processes is constructed such that each one of this family is a weak solution to some stochastic differential equation. It turns out that the property of weak uniqueness of a solution to this equation is failed.
format Article
author Kopytko, B.I.
Portenko, M.I.
spellingShingle Kopytko, B.I.
Portenko, M.I.
An example of a stochastic differential equation with the property of weak non-uniqueness of a solution
author_facet Kopytko, B.I.
Portenko, M.I.
author_sort Kopytko, B.I.
title An example of a stochastic differential equation with the property of weak non-uniqueness of a solution
title_short An example of a stochastic differential equation with the property of weak non-uniqueness of a solution
title_full An example of a stochastic differential equation with the property of weak non-uniqueness of a solution
title_fullStr An example of a stochastic differential equation with the property of weak non-uniqueness of a solution
title_full_unstemmed An example of a stochastic differential equation with the property of weak non-uniqueness of a solution
title_sort example of a stochastic differential equation with the property of weak non-uniqueness of a solution
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/4442
citation_txt An example of a stochastic differential equation with the property of weak non-uniqueness of a solution / B.I. Kopytko, M.I. Portenko // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 68–76. — Бібліогр.: 13 назв.— англ.
work_keys_str_mv AT kopytkobi anexampleofastochasticdifferentialequationwiththepropertyofweaknonuniquenessofasolution
AT portenkomi anexampleofastochasticdifferentialequationwiththepropertyofweaknonuniquenessofasolution
AT kopytkobi exampleofastochasticdifferentialequationwiththepropertyofweaknonuniquenessofasolution
AT portenkomi exampleofastochasticdifferentialequationwiththepropertyofweaknonuniquenessofasolution
first_indexed 2023-03-24T08:30:11Z
last_indexed 2023-03-24T08:30:11Z
_version_ 1796139181036011520