The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2)
The theorem on a normal limit (n→∞) distribution of the number of false solutions of a beforehand consistent system of nonlinear random equations in the field GF(2) with independent coefficients is proved. In particular, we assume that each equation has coefficients that take values 0 and 1 with e...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4447 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) / V.I. Masol, S.Y. Slobodyan // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 116–126. — Бібліогр.: 3 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The theorem on a normal limit (n→∞) distribution of the number of false solutions
of a beforehand consistent system of nonlinear random equations in the field GF(2)
with independent coefficients is proved. In particular, we assume that each equation
has coefficients that take values 0 and 1 with equal probability; the system has a
solution where the number of ones equals [ρn], ρ = const, 0 < ρ < 1. |
---|