The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2)
The theorem on a normal limit (n→∞) distribution of the number of false solutions of a beforehand consistent system of nonlinear random equations in the field GF(2) with independent coefficients is proved. In particular, we assume that each equation has coefficients that take values 0 and 1 with e...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/4447 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) / V.I. Masol, S.Y. Slobodyan // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 116–126. — Бібліогр.: 3 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-4447 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-44472009-11-11T12:00:29Z The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) Masol, V.I. Slobodyan, S.Y. The theorem on a normal limit (n→∞) distribution of the number of false solutions of a beforehand consistent system of nonlinear random equations in the field GF(2) with independent coefficients is proved. In particular, we assume that each equation has coefficients that take values 0 and 1 with equal probability; the system has a solution where the number of ones equals [ρn], ρ = const, 0 < ρ < 1. 2006 Article The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) / V.I. Masol, S.Y. Slobodyan // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 116–126. — Бібліогр.: 3 назв.— англ. 0321-3900 http://dspace.nbuv.gov.ua/handle/123456789/4447 519.21 en Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The theorem on a normal limit (n→∞) distribution of the number of false solutions
of a beforehand consistent system of nonlinear random equations in the field GF(2)
with independent coefficients is proved. In particular, we assume that each equation
has coefficients that take values 0 and 1 with equal probability; the system has a
solution where the number of ones equals [ρn], ρ = const, 0 < ρ < 1. |
format |
Article |
author |
Masol, V.I. Slobodyan, S.Y. |
spellingShingle |
Masol, V.I. Slobodyan, S.Y. The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) |
author_facet |
Masol, V.I. Slobodyan, S.Y. |
author_sort |
Masol, V.I. |
title |
The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) |
title_short |
The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) |
title_full |
The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) |
title_fullStr |
The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) |
title_full_unstemmed |
The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) |
title_sort |
normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field gf(2) |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/4447 |
citation_txt |
The normal limit distribution of the number of false solutions of a system of nonlinear random equations in the field GF(2) / V.I. Masol, S.Y. Slobodyan // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 116–126. — Бібліогр.: 3 назв.— англ. |
work_keys_str_mv |
AT masolvi thenormallimitdistributionofthenumberoffalsesolutionsofasystemofnonlinearrandomequationsinthefieldgf2 AT slobodyansy thenormallimitdistributionofthenumberoffalsesolutionsofasystemofnonlinearrandomequationsinthefieldgf2 AT masolvi normallimitdistributionofthenumberoffalsesolutionsofasystemofnonlinearrandomequationsinthefieldgf2 AT slobodyansy normallimitdistributionofthenumberoffalsesolutionsofasystemofnonlinearrandomequationsinthefieldgf2 |
first_indexed |
2023-03-24T08:30:12Z |
last_indexed |
2023-03-24T08:30:12Z |
_version_ |
1796139181560299520 |