Existence of generalized local times for Gaussian random fields

We consider a Gaussian centered random field that has values in the Euclidean space. We investigate the existence of local time for the random field as a generalized functional, an element of the Sobolev space constructed for our random field. We give the sufficient condition for such an existence in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Rudenko, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4449
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Existence of generalized local times for Gaussian random fields / A. Rudenko // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 142–153. — Бібліогр.: 6 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider a Gaussian centered random field that has values in the Euclidean space. We investigate the existence of local time for the random field as a generalized functional, an element of the Sobolev space constructed for our random field. We give the sufficient condition for such an existence in terms of the field covariation and apply it in a few examples: the Brownian motion with additional weight and the intersection local time of two Brownian motions.