Matrix parameter estimation in an autoregression model
The vector difference equation ξk = Af(ξk−1)+εk, where (εk) is a square integrable difference martingale, is considered. A family of estimators ˇAn depending, besides the sample size n, on a bounded Lipschitz function is constructed. Convergence in distribution of √n (ˇAn − A) as n→∞is proved wit...
Saved in:
Date: | 2006 |
---|---|
Main Authors: | Yurachkivsky, A.P., Ivanenko, D.O. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2006
|
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/4450 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Matrix parameter estimation in an autoregression model / A.P. Yurachkivsky, D.O. Ivanenko // Theory of Stochastic Processes. — 2006. — Т. 12 (28), № 1-2. — С. 154–161. — Бібліогр.: 4 назв.— англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Asymptotically optimal estimator of the parameter of semi-linear autoregression
by: Ivanenko, D.
Published: (2007) -
Method of noise-robust estimation of parameters of autoregressive model in frequency domain
by: V. K. Zadiraka, et al.
Published: (2021) -
Robustness of forecasting based on the small parameters autoregressive time series models
by: Ju. S. Kharin, et al.
Published: (2014) -
Modeling in a class of autoregression equations systems in con-ditions of structural uncertainty
by: A. P. Sarychev
Published: (2015) -
Method for the Maximization of the Likelihood Function of Speech Autoregressive Parameters Based on Line Spectrum Pairs
by: Semenov, V.Yu.
Published: (2018)